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ABSTRACT 

 

AEROLEASTIC ANALYSES OF AN UNMANNED HELICOPTER 

 

 

 

Uzunkaya, Alaaddin Furkan 

Master of Science, Aerospace Engineering 

Supervisor: Prof. Dr. Yavuz Yaman 

 

 

April 2023, 148 pages 

 

 

In helicopter comprehensive analysis tools, helicopter blades could be modeled as 

rigid beams in torsional direction; however, it is well known that helicopter blades 

are very flexible structures. One of the main purposes of this thesis is to analyze the 

effects of torsional twist on the helicopter’s performance characteristics and to 

examine validity of rigid blade assumption. To perform the analyses, aerodynamic 

loads are calculated by using blade element momentum theory. In elastic blade 

analyses, aerodynamic loads cause a torsional twist which increments aerodynamic 

load field on the blade. On the other hand, there is no torsional twist and 

aerodynamic load increment in the rigid blade assumption. A trim code is written 

to obtain trim points for a level flight at sea level by using rigid and elastic blade in 

which the only difference is the torsional twist and aerodynamic increments due to 

the torsional twist. 

In the second part of the thesis, flutter analyses are conducted for the reference 

blade by using steady aerodynamic loads, Theodorsen’s, Loewy’s and a modified 

version of Loewy’s unsteady aerodynamic theories.  

Keywords: Aeroelasticity, Unmanned Helicopter, Flutter, Theodorsen, Loewy.  
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ÖZ 

 

İNSANSIZ BİR HELİKOPTERİN AEROELASTİK ANALİZLERİ 

 

 

 

Uzunkaya, Alaaddin Furkan 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Yöneticisi: Prof. Dr. Yavuz Yaman 

 

 

Nisan 2023, 148 sayfa 

 

 

Kapsamlı helikopter analiz araçlarında helikopter palleri burulma yönünde rijit 

kirişler olarak modellenebilmektedir ancak bilinmektedir ki helikopter palleri son 

derece esnek yapılardır. Bu tezin ana amaçlarından birisi de palin esnek yapısından 

kaynaklanan burulmanın helikopterin performans özelliklerine etkisini araştırmak 

ve rijit pal varsayımının ne kadar geçerli bir varsayım olduğunu sorgulamaktır. 

Analizleri gerçekleştirebilmek için aerodinamik yükler Pal Elemanı Momentum 

Teorisi (İng. Blade Element Momentum Theory) kullanılarak hesaplanmıştır. Esnek pal 

analizleri sırasında aerodinamik yüklerin sebep olduğu burulma aerodinamik yük 

dağılımını etkilemiştir. Öte yandan, rijit pal varsayımında herhangi bir burulma 

olmadığı için aerodinamik yük dağılımında bir değişme olmamıştır. Rijit ve esnek 

pal yapısı için deniz seviyesinde ve yatay düzlemde sabit hızdaki uçuş noktalarını 

elde eden bir kod yazılmış olup, bu kodun rijit ve esnek pal için tek farkı esnek 

palin tecrübe ettiği burulmadan dolayı aerodinamik yük dağılımının etkilenmesidir. 

Tezin ikinci kısmında ise zamandan bağımsız aerodinamik yükler, Theodorsen’in 

ve Loewy’nin zamana bağlı aerodinamik teorileri ile Loewy’nin teorisinin 

değiştirilmiş bir hali referans alınan palin çırpınma analizleri için kullanılmıştır. 
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Anahtar Kelimeler: Aeroelastisite, İnsansız Helikopter, Çırpınma, Theodorsen, 

Loewy. 
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𝑥𝜃  Non-dimensional distance between shear center and c.g. of the airfoil. 

𝑌  Main rotor lateral force. 

𝑌𝐶𝐺 
 Distance between c.g. of the aircraft and rotor hub in y-axis of body-

fixed frame. 

𝑌𝐹  Fuselage aerodynamic side force. 

GREEK SYMBOLS 

𝛼  Angle of attack. 

𝛼𝑟  Rigid angle of attack. 

𝛽0  Main rotor coning angle. 

𝛽1𝑠  Main rotor 1st harmonic lateral tip-path plane-tilt. 

𝛽1𝑐  Main rotor 1st harmonic longitudinal tip-path plane-tilt. 

𝛿  Elastic increment of the angle of attack. 

𝜁0  Main rotor mean lag angle. 

𝜁1𝑐  Main rotor 1st harmonic lateral shift. 

𝜁1𝑠  Main rotor 1st harmonic longitudinal shift. 
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𝜂  Non-dimensional vertical displacement of the blade section. 

𝜃  Blade pitch angle. (𝜃𝑐𝑜𝑛 + 𝜃𝑡𝑤) 

𝜃0  Main rotor collective input. 

𝜃1𝑐  Main rotor 1st harmonic lateral cyclic input. 

𝜃1𝑠  Main rotor 1st harmonic longitudinal cyclic input. 

𝜃𝑐𝑜𝑛  Main rotor control input. (𝜃0 + 𝜃1𝑐 cos𝜓 + 𝜃1𝑠 sin𝜓) 

𝜃𝐹𝑃  Flight path angle. 

𝜃𝑡𝑤  Elastic twist of the blade. 

𝜆  Nondimensional rotor inflow ratio. (𝜈/Ω𝑅) 

𝜆𝑖  Nondimensional rotor induced inflow ratio. (𝜈𝑖/Ω𝑅) 

𝜇  Advance ratio. (𝑉𝑐𝑜𝑠 𝑖/Ω𝑅) 

𝜇𝑧  Climb velocity advance ratio. (𝑉𝑠𝑖𝑛 𝑖/Ω𝑅) 

𝜇𝑚  Non-dimensional mass ratio. 

𝜈  Induced inflow. 

𝜈𝑖  Induced inflow in hover. 

𝜉  
Ratio of the first bending natural frequency of the blade to the main 

rotor nominal rotational speed. (𝜔ℎ/𝛺) 

𝜌  Air density. 

𝜎  Solidity of the main rotor. (𝑁𝑏𝑐/𝜋𝑅) 

Φ  Lateral tilt or roll angle of the aircraft. 

𝜑  
Ratio of the plunging natural frequency to the pitching natural 

frequency. (𝜔ℎ/𝜔𝜃) 
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𝜙  Inflow angle. 

𝜓  Blade azimuth angle. (𝛺𝑡) 

Ω  Main rotor nominal RPM. 

𝜔  Oscillation frequency of a state. 

𝜔ℎ  First bending natural frequency. 

𝜔𝜃  First torsional natural frequency. 
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CHAPTER 1  

1 INTRODUCTION  

Helicopter is a type of aircraft which rotates its blades in order to produce the lift 

necessary to take-off. Since these rotating blades could produce lift even when the 

aircraft is stationary, helicopters have the ability of vertical take-off and landing. 

Thanks to the vertical take-off and landing capability, helicopters are one of the most 

important and precious vehicles for different civilian and military objectives such as 

transporting, rescuing, and exploring. 

Since objectives of a helicopter vary, there are different helicopter designs to 

accomplish these different objectives successfully. These designs are usually named 

according to the main rotor configurations and orientations. The first and most 

common helicopter design is the conventional helicopters which has one main rotor 

and one tail rotor. Purpose of the main rotor is to produce the necessary thrust, 

whereas the tail rotor is used to balance the main rotor torque and provide yaw 

motion. 

 

 

Figure 1.1. Turkish Aerospace T129 Atak Helicopter. [22] 
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Advantages of the conventional helicopters could be listed as: 

• Their design is simple and generally lighter than other design types. 

• Tail rotor could provide a significant control power in yaw direction. 

Whereas disadvantages are: 

• Tail rotor requires power which increases total power needed to fly the 

helicopter. 

• The tail rotor operates in an aerodynamic environment where the wakes 

coming from the main rotor and the fuselage is highly effective. Therefore, 

the tail rotor operates in an aerodynamically inefficient environment. 

• Due to the wakes coming from the fuselage and the main rotor, tail rotor 

may produce excessive vibrations. 

Co-axial helicopters could be given as second helicopter design. In the co-axial 

design, there are two counter rotating rotors sharing same shaft with some vertical 

separation. Since the main rotors rotates in different directions, no tail rotor is 

needed. Yaw control is obtained by the differential torque. Advantages of the co-

axial design are: 

• Necessary rotor diameter to produce same thrust could be lower compared 

to conventional helicopters since there are two main rotors.  

• More thrust could be obtained compared to a conventional helicopter 

having same radius. 

Disadvantages of the co-axial design could be listed as: 

• Yaw control is generally weak since the yaw is achieved by the torque 

difference.  

• Co-axial design of the rotor is complicated in terms of transmission and 

rotor control. 
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Figure 1.2. Kamov KA-32 co-axial helicopter. [13] 

The third helicopter design is tandem rotor helicopters which has two main rotors 

as co-axial helicopters; however, these rotors are separated in longitudinal 

direction. Since the rotor rotates in opposite directions, tail rotor is not necessary. 

 

Figure 1.3. Boeing CH-47 Chinook tandem helicopter. [5] 

Tandem helicopters main advantages are: 

• Thanks to the two main rotors they are capable of lifting heavy weights. 

• Yaw control is achieved by differential lateral cyclic which provides 

significant control power in yaw direction.  

Disadvantages of the tandem helicopters could be given as: 

• Since the fuselage of the aircraft is large which returns with high gross-

weight, two main rotors are needed. 

• Two engines are necessary to operate the main rotors. 
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As it is stated before, helicopters could produce lift without having a relative speed 

w.r.t the air. This lift is produced by rotating the blade which are connected to the 

rotor hub. Rotor hub is a helicopter component where not only the connection 

between the blades and the main shaft is obtained but also blades are controlled. 

There are different types of rotor hub design to control the blades. Articulated rotor, 

teetering rotor, hingeless rotor and bearingless rotor designs could be given as 

examples for different rotor hub designs. 

 

Figure 1.4. Articulated rotor schematic. [12] 

In articulated design, blades are connected to the rotor hub with hinges which frees 

the blades motion in out-of-plane motion (flapping) and in-plane motion (lead-lag). 

These hinges are called as flap-hinge and lead-lag-hinge respectively. Main 

purpose of flap-hinges and lag-hinges is reducing the stress coming from the blades 

at the connection points between the blades and the rotor hub by freeing flap and 

lead-lag motion.  
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In teetering rotor design, there are two blades, and these blades are connected to the 

rotor shaft with a hinge similar to a flapping-hinge. Since the blades are connected 

to each other, flapping motion occurs as a whole. 

  

Figure 1.5. Teetering rotor schematic. [12] 

Hingeless rotor design could be given as the third rotor hub configuration. As its 

name suggests, no flap-hinge or lead-lag-hinge is implemented between the rotor 

shaft and the blades; however, there exists a pitching bearing to control the blades. 

Blades are connected to the main rotor hub with a flexible medium. Material and 

design of this medium depends on the rotor design. Main advantages of the hingeless 

rotor design are mechanical simplicity, low maintenance costs and low aerodynamic 

drag. However, since the blades are connected to the rotor hub with an elastic 

medium, a strong connection must be implemented which generally returns with a 

heavier rotor hub [12]. Another critical issue regarding the hingeless rotors is 

connecting the blades to the rotor hub with a flexible medium creates a coupling 

between the flapping, lead-lag and pitching motions. Therefore, aeroelastic and 

aeromechanic analyses should be carefully conducted for hingeless rotors. 
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Figure 1.6. Hingeless rotor schematic. [12] 

Bearingless rotors are the fourth rotor design. They are like hingeless rotors in 

terms of not having flap and lead-lag hinges. On the other hand, bearingless rotors 

do not have any pitch bearing or hinge. Instead, the control of the blades is 

obtained by twisting a relatively soft beam which connects the blade to the rotor 

hub. Bearingless rotors has an advantage over hingeless rotors in terms of 

maintenance cost. However, design and analysis stage of the bearingless rotors are 

more complicated than the hingeless rotors since designing the beam through 

which control and connection are obtained might be a challenging task. 

 

Figure 1.7. Bearingless rotor schematic. [12] 
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CHAPTER 2  

2 LITERATURE REVIEW 

As it is discussed in the previous section, helicopter blades are flexible structures and 

the loads are harmonic; therefore, the blades are subjected to high vibratory loads 

with structural deformations. If the structural deformations are excessive, control of 

the helicopter could be very hard. On the other hand, if the vibratory loads exceed 

the structural limits, the structure could fail. Moreover, as the airspeed increases 

flutter phenomenon could occur which may result in a fatal failure. Due to these 

problems, there are lots of studies conducted in terms of aeroelastic analyses 

helicopter blades. In this section, some of the previous works are discussed. 

In comprehensive helicopter analysis tools, the rotor hub, the blades, and the 

connection between the hub and blades could be modeled as rigid by neglecting their 

structural flexibilities [12]. In his work, Özturan [17] modeled the main rotor hub, 

the blades, and the connection of the blades to the rotor hub as flexible structures of 

an articulated rotor configuration with root spring-damper system by using a finite 

element analysis tool and a multibody dynamic analysis tool. In addition, centrifugal 

stiffening and large deformations blades experiencing are included as nonlinearities 

to the analyses he conducted. Therefore, he was able to find stress concentrated 

points and actual deformations of the blades in hover and forward flight conditions. 

In Akel’s [2] study, torsional deformations experienced by the blades and their 

effects to the trim points are examined for a full-scale helicopter having an 

articulated rotor design. Aerodynamic loads are calculated using an in-house 

helicopter comprehensive analysis tool by implementing blade element method. 

Then these aerodynamic loads are transferred to a finite element analysis in which 

structural deformations are calculated. After finding the structural deformations from 

the finite element analyses, these deformations are transferred to the blade element 
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method as an angle of attack input. Akel found that torsional deformation of the blade 

could reach up to 1.5 degrees in hover and 2 degrees in forward flight which could 

be considered as a relatively high deformation. Therefore, to increase the fidelity of 

the analysis tool, effect of the torsional deformations should be considered in the 

analysis tool to obtain the necessary control inputs. 

In the study which is done by the Siearadzki [20], UH-60A blades are modeled 

according to the Euler-Bernoulli Beam Theory and the main purpose of the study is 

to determine the deformation of the blades and influence of the deformations on the 

blade loads and general performance characteristics in hover condition. In the study, 

results obtained from the rigid blade assumption and results obtained elastic blade 

model are compared as well. In Sieradzki work, tip deflection of the blade in vertical 

direction is found as about 0.65 m, whereas the tip deflection of the elastic blade is 

found as about 0.40 m if the collective input is given as 10 degrees. The main reason 

elastic blade deforms less than the rigid blade is that torsional deformation of the 

blade is experienced as negative in the elastic blade which decreases the lift produced 

by the blade. Therefore, to be able to produce same thrust of the rigid blade, 

collective input for an elastic blade must be higher than the rigid blade collective 

input. The situation is also showed in Sieradzki’s study. To obtain similar load 

distribution on the blade for the rigid blade where the collective input is 10 degrees, 

16 degrees collective input is needed for the elastic blade. The difference is 

considerably high; therefore, to increase the fidelity of the performance calculations, 

flexibility of the blades should be included in the analyses. 

Farsadi and Kayran [9] examined the aeroelastic stability of a composite wind 

turbine blade for different rotational speed. In the study, blades of the wind turbine 

are modeled as thin-walled composite box beams. For the unsteady aerodynamic 

loads, Theodorsen’s and Loewy’s unsteady aerodynamic theories and lift deficiency 

functions are used. In their work, it is found that for a relatively lower rotational 

speed, the difference between the flutter speed prediction by Theodorsen’s and 

Loewy’s unsteady aerodynamics are very close to each other. However, as rotational 

speed of the wind turbine blades increases, difference between the flutter speed 
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predictions widens as well since the returning wake effect is corelated with the 

rotational speed in Loewy’s unsteady aerodynamic theory. The study also examined 

the effects of the number of blades on the flutter speed. It is found that, as the number 

of blades of the wind turbine increases, the flutter speed prediction coming from the 

Loewy’s unsteady aerodynamics increases as well, whereas there is no change for 

the Theodorsen’s unsteady theory. The reason behind this fact is that in Loewy’s 

theory, wake returning from the blades are considered as well. In other words, 

number of blades is an argument for the Loewy’s lift deficiency function. Therefore, 

as the number of blades changes flutter speed prediction changes as well in Loewy’s 

theory. 

In Çiçek’s [7] study, different flutter speed prediction methodologies are investigated 

for fixed-wing and rotary-wing aircrafts. In his study, Theodorsen’s, Loewy’s, 

Wagner’s unsteady aerodynamic theories and Pitt-Peters, Peters-He inflow theories 

are used to calculate the aerodynamic loads, whereas a simple beam theory expanded 

by Rayleigh-Ritz and Galerkin methods is used in the structural equations. To 

expand the scope of the work, Çiçek also examined the effects of the locations of the 

shear center and the mass center of the blade to the flutter speed for a helicopter in 

forward flight. In the study, it is shown that flutter speed predictions of the inflow 

theories are more conservative than the flutter speed predictions of the unsteady 

aerodynamic theories for a rotary-wing aircraft. Therefore, to be on the safe side 

flutter analyses could be conducted by implementing inflow theories as well. 

Another important outcome of the study is that if the center of mass is coincident 

with the shear center, no flutter instability is experienced. 
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CHAPTER 3  

3 REFERENCE HELICOPTER 

In this chapter, details of the structure of the unmanned helicopter’s will be given. 

Reference helicopter is an unmanned helicopter with a 160 kg maximum take-off 

weight. The helicopter could carry 40 kg payload. 10 kg of the payload is the 

optical systems. 30 kg of the payload is the cargo which could be dropped during 

the flight. Maximum forward flight speed of the helicopter is approximately 125 

km/h. 

Platform’s length is 2.07 m, width is 0.78 m and height is 1.22 m. Platform’s mass 

center is intersecting with the rotor hub in x-y plane in body-fixed frame, whereas 

platform center of gravity is 40 cm below the rotor hub.  

Table 3.1 Reference helicopter’s specifications. 

MTOW 160 kg 

Payload 40 kg 

Length 2.07 m 

Width 0.78 m 

Height 1.22 m 

CG Position w.r.t Rotor Hub in x-Body Axis ~0 m 

CG Position w.r.t Rotor Hub in y-Body Axis ~0 m 

CG Position w.r.t Rotor Hub in z-Body Axis 0.4 m 

Max Speed 125 km/h 
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3.1 Reference Helicopter’s Fuselage Aerodynamic Properties 

In this work, fuselage of the helicopter is considered as a blunt body. Therefore, the 

fuselage will create some aerodynamic loads during forward flight. These 

aerodynamic loads are assumed to be as: 

 𝐷 =
1

2
𝜌𝑉2𝐹𝐴𝐶𝐷,𝐹𝛼 (3.1) 

 𝑀𝑌𝐹 =
1

2
𝜌𝑉2𝐹𝐴𝐹𝐿𝐶𝑀,𝐹𝛼 (3.2) 

where 𝜌 is the air density, 𝑉 is the helicopter’s forward flight speed, 𝐹𝐴 and 𝐹𝐿 are 

the aerodynamic effective area and aerodynamic effective length respectively, 𝛼 is 

the angle of attack of the fuselage, 𝐶𝐷,𝐹 and 𝐶𝑀,𝐹 are non-dimensional aerodynamic 

drag and pitching moment coefficients respectively which are given w.r.t the angle 

of attack in Figure 3.1. 

In this work, it is assumed that platform does not experience any side-slip angle 

and aerodynamic lateral force and rolling moment of the fuselage are assumed to 

be zero at zero side-slip angle. Another important assumption made in this work is 

that fuselage creates neither aerodynamic force nor aerodynamic yawing moment 

in z-axis in body-fixed frame. 

 

 

 

 

 

 

 



 

 

13 

 

Figure 3.1. Normalized fuselage drag and pitching moment coefficients versus 

angle of attack of the fuselage.  
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3.2 Rotor and Blade Properties 

Rotor configuration of the reference helicopter is chosen as hingeless. As it is 

discussed in Section 1, hingeless rotor configurations are mechanically simple. 

Therefore, hingeless rotors are preferred in most unmanned helicopters such as 

ASELSAN ARI-1T, Schiebel CAMCOMPTER® S-100, Skeldar V-200 and 

Anduril Ghost.  

The rotor has two blades. Blades have a span of 2 m from the rotor hub. No taper 

or design twist exists in the blades. First 20 cm of the blade is used for the 

connection to the hub and pitch links. It is assumed that the connection between 

rotor hub and the blade is passing through the shear center of the blade.  

Airfoil of the blades are chosen as NACA 0012 having a 9 cm chord. Blades are 

made of aluminum and the structure of the blades are designed as D-section type. 

In D-section structures, the spar and the leading edge is thicker than the trailing 

edge part since most of the loads are going to be carried by the D-shaped structure. 

Leading edge’s thickness could be as low as one tenth of the thickness of the D-

shape. 

There is a non-structural mass in the blades installed at about 5 mm behind of the 

leading edge. There are two main purposes of this non-structural mass. First one is 

to make the center of gravity of the blades closer to the shear center so that flutter 

speed is increased. Second one is to increase the out-of-plane bending stiffness of 

the blades. In helicopter blades, out-of-plane bending stiffness mainly comes from 

the centrifugal forces due to the rotation of the rotor; therefore, as the mass per unit 

length increases, blades will be stiffer in out-of-plane bending direction. However, 

as the centrifugal force increases axial loading at the root will increase as well. 

Therefore, an optimum mass should be chosen to increase the out-of-plane bending 

stiffness, whereas staying in the axial load safety limit. Another crucial point 

regarding the non-structural mass is that since this mass cannot carry any load, it is 

a deadload. Therefore, not to increase the weight of the blade unnecessarily, mass 
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of the non-structural should be chosen carefully. A blade design without any 

additional non-structural mass is more favorable if it could be achieved in the 

structural design stage. 

Table 3.2 Rotor and blade properties. 

Number of Blades 2 

Rotor Radius, R 2 m 

Rotor Speed, 𝛀 1100 RPM 

Rotor Design Hingeless 

Airfoil NACA 0012 

Blade Chord, c 9 cm 

CG from the LE 2.46 cm 

Shear Center from the LE 2.22 cm 

Young’s Modulus, E 69 GPa 

Shear Modulus, G 26.5 GPa 

Torsional Constant, J 1.54x10-8 m4 

Density, 𝝆𝑨𝑳 2700 kg/m3 

Blade Mass, m ~1 kg 

Material Aluminum 

Skin thickness, 
1 mm to 1.5 mm in D section 

~0.1 mm in TE section. 

Blade-Hub Connection Length 20 cm 

Blade-Hub Connection Material Stainless Steel 
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 Fan Plot (Campbell Diagram) of the Reference Blade 

Due to the centrifugal forces acting on the helicopter blade, stiffness of the blade 

becomes a function of the rotor speed. Since stiffness changes with the rotor speed, 

natural frequencies of the blade changes with the rotor speed as well. Fan plot or 

Campbell Diagram shows how natural frequencies of the blade change with the 

rotor speed. In Figure 3.2, natural frequencies of the reference blade w.r.t rotational 

speed are given. These natural frequencies are obtained by using MSC Nastran 

structural analysis tool.  

 

Figure 3.2. Fan plot (Campbell Diagram) of the reference blade. 

Dashed lines in Figure 3.2 are called as N per revolution lines. “N” is the integer 

multiply of the nominal rotor speed. For example, 2Prev means that the frequency of 

a state or a loading is 2Ω.  
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Table 3.3 Reference blade’s natural frequencies with rotor speed. 

Mode 

 

 

 

RPM 

1st 

In-

Plane 

Bending 

(rad/s) 

1st 

Out-of-

Plane 

Bending 

(rad/s) 

2nd 

Out-of-

Plane 

Bending 

(rad/s) 

2nd 

In-

Plane 

Bending 

(rad/s) 

3rd 

Out-of-

Plane 

Bending 

(rad/s) 

1st 

Torsion 

(rad/s) 

4th 

Out-of-

Plane 

Bending 

(rad/s) 

0 25.2 19.5 140.7 419.2 416.5 827.2 840.4 

25 25.2 19.7 140.9 419.2 416.6 827.2 840.5 

50 25.2 20.3 141.4 419.4 417.1 827.2 840.9 

75 25.3 21.2 142.3 419.6 417.9 827.4 841.6 

100 25.4 22.5 143.4 420.0 419.0 827.5 842.7 

200 26.2 29.8 151.1 422.3 426.6 828.0 849.9 

300 27.4 39.0 163.1 426.2 438.9 828.5 862.2 

400 29.0 49.0 178.6 431.5 455.4 828.9 879.3 

500 30.9 59.4 196.6 438.3 475.8 829.3 900.9 

600 33.1 69.9 216.6 446.4 499.4 823.5 926.5 

700 35.5 80.6 238.0 455.8 525.8 830.3 955.8 

800 38.1 91.4 260.4 466.4 554.5 830.8 988.4 

900 40.8 102.2 283.7 478.2 585.1 831.5 1023.8 

1000 43.7 113.1 307.5 490.9 617.3 832.1 1061.9 

1045 45.3 119.2 321.3 498.6 636.2 832.6 1084.6 

1100 46.6 123.9 331.7 504.6 650.8 833.0 1102.1 

1155 48.2 129.9 345.3 512.5 669.7 833.4 1125.1 
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a) First in-plane bending mode,   b) First out-of-plane bending mode, 

 

 
 

c) First torsion mode,    d) Second in-plane bending mode, 

 

 

 
 

e) Second out-of-plane bending mode, f) Third out-of-plane bending mode, 

 

Figure 3.3. Mode shapes of the reference blade. 
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For the helicopter blades, frequencies of the blade pitch control are integer multiply 

of the rotor rotational speed which will be discussed in detail in Section 4.9. Since 

the loads of the blades are controlled by the cyclic controls, blades are excited at 

the frequency of rotor rotational speed or its integer multiply. Therefore, any N per 

revolution lines should not intersect any natural frequency of the blade at the 

rotor’s operational speed to prevent any structural fail. Therefore, fan plot is a 

useful graph to observe whether any period of the loads acting on the blade will 

intersect with any natural frequency of the blade. When Figure 3.2 is inspected, it is 

seen that none of the natural frequencies intersect with any integer multiply of the 

rotor speed. 

Another point which should be emphasized regarding Figure 3.2 is that first out-of-

plane bending natural frequency is mostly dominated by the rotor speed due to the 

centrifugal stiffening effect. Hence, rotor rotational speed could be used to express 

the structural stiffness of the blade in the out-of-plane bending direction during the 

rotation. 
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 Reference Blade’s Aerodynamic Coefficients 

Reference blade’s airfoil is chosen as NACA0012 airfoil. Non-dimensional lift and 

drag coefficients 𝑐𝑙 and 𝑐𝑑 are given in [16] as:  

 

Figure 3.4. Non-dimensional lift and drag coefficient. 
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As it could be observed from Figure 3.4, 𝑐𝑙 has a linear behavior, 𝑐𝑑 has a second 

order polynomial behavior. Therefore, as [19] suggests 𝑐𝑙 and 𝑐𝑑 could be 

approximated as: 

 𝑐𝑙 = 𝑐𝑙𝛼𝛼 (3.3) 

 𝑐𝑑 = 𝑐𝑑0 + 𝑐𝑑𝛼2𝛼
2 (3.4) 

where 𝑐𝑙𝛼 = 5.98, 𝑐𝑑0 = 0.006533, 𝑐𝑑𝛼2 = 0.2783 for the NACA0012 airfoil. 

 

Figure 3.5. Comparison of approximated cl and cd values to Ref. [16]. 
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Let us look at the ratio of the 𝑐𝑙 to 𝑐𝑑.  

 

Figure 3.6. Ratio of the approximated cl to cd. 

From Figure 3.6, it is seen that 𝑐𝑙 to 𝑐𝑑 ratio reaches about 70 in the operating 

range of the reference helicopter. Therefore, drag effects in the thrust calculation 

could be neglected since the drag effect in the thrust would be negligible.  

Note that NACA 0012 airfoil is a symmetric airfoil; thus, it is assumed that its non-

dimensional aerodynamic pitching moment coefficient cm is zero.  
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CHAPTER 4  

4 STATIC AEROELASTICITY 

Static aeroelasticity is a brand of the aeroelasticity in which main concern is the 

interaction between the structure and the aerodynamic loads. In this section, 

aerodynamic forces, and their relations with the blade in terms of static 

aeroelasticity will be discussed. 

4.1 Momentum Theory 

Helicopter rotor produces a thrust by the air’s interaction with the blades. 

According to the Newton’s Law there must be an equal reaction of the rotor. 

Consequently, velocity of the air in the rotor wake increases in the opposite 

direction of the rotor thrust. Momentum theory studies the relation between the 

rotor thrust and the air velocity in the wake. 

Momentum theory was firstly studied by W.J.M Rankine 1865 and R.E Froude in 

1885 to examine marine propellers [12]. Momentum theory estimates the rotor 

performance by applying basic laws (mass, momentum, and energy conservation 

laws) of fluid motion to the rotor and the flow. The theory is an overall approach 

which directly connects the rotor thrust and power to the inflow velocity.  

In momentum theory, helicopter rotor is assumed as a circular disk whose thickness 

is zero and the rotor can support the pressure difference between upper and lower 

surface. Let us assume a rotor disk whose area is A produces a uniformly 

distributed thrust T in an incompressible and inviscid air environment. 
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Figure 4.1. Flow of the rotor according to momentum theory in hover. [12] 

The mass flux passing through the rotor is �̇� = 𝜌𝐴𝜈. According to the momentum 

conservation law, the rotor thrust must be equal to the rate of change of linear 

momentum of the air between station 0 (far upstream) and station 1 (far 

downstream). Since swirl in the wake is neglected, air velocity is zero at station 0 

for a hovering rotor which results 𝑇 = �̇�𝑤. By using energy conservation law, rate 

of change of energy of the air must be equal to the work done by the rotor. Rate of 

change of energy of the air is the difference between station 0 where the air is at 

rest and station 1 in which the air has a velocity 𝑤. Therefore, work done by the 

rotor could be expressed as 𝑇𝜈 =
1

2
�̇�𝑤2. It could be easily showed that 𝑤 = 2𝜈 by 

combining energy conservation law and momentum conservation law. Since the 

mass flux and the density assumed to be constant, the area of the slipstream at 

station 1 is found as 
1

2
𝐴. 

To find the thrust, Bernoulli’s equation could be used between the stations 0 and 2 

(just above of the rotor disk), 1 and 3 (just below of the rotor disk). From the 

station 0 and station 2, Bernoulli’s relation states that 𝑝0 = 𝑝2 +
1

2
𝜌𝜈2. From the 

station 1 to the station 3 Bernoulli’s principle gives 𝑝3 +
1

2
𝜌𝜈2 = 𝑝0 +

1

2
𝜌𝑤2. 
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When these two equations are combined, it is found that 𝑇/𝐴 = 𝑝3 − 𝑝2 =
1

2
𝜌𝑤2 

from which inflow could be written as: 

 𝜈𝑖 = √𝑇/2𝜌𝐴 (4.1) 

After founding induced velocity in Eq. (4.1), total power could be found from the 

relation: 

 𝑃 = 𝑇𝜈 = 𝑇√𝑇/2𝜌𝐴 (4.2) 

Let us define some non-dimensional parameters in terms of induced velocity, thrust 

and induced power by using blade tip speed 𝛺𝑅. 

 𝐶𝑇 = 𝑇/𝜌𝐴(𝛺𝑅)2 (4.3) 

 𝜆𝑖 =
𝜈𝑖
𝛺𝑅

= √𝐶𝑇/2 (4.4) 

 𝐶𝑃 = 𝐶𝑇
3/2
/√2 (4.5) 

These equations are valid for the condition where the rotor is hovering in the air. 

Now let us examine the case where the rotor is climbing in the air by making same 

assumptions as made in hovering case: rotor is modeled as disk, thrust is uniformly 

distributed over the rotor, induced velocity is uniform, slipstream is smooth, fluid is 

ideal and swirl in the wake is neglected. 
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Figure 4.2. Flow of the rotor according to momentum theory in climbing. [12] 

Mass flux passing through the rotor is now �̇� = 𝜌𝐴(𝑉 + 𝜈). Where 𝑉 is the climb 

velocity. By applying energy and momentum conservation laws between the 

stations 0 and 1, 𝑇(𝑉 + 𝜈) =
1

2
�̇�(𝑉 + 𝑤)2 −

1

2
�̇�𝑉2 and thrust is found as  

𝑇 = �̇�(𝑉 + 𝑤) − �̇�𝑉. When these two equations are combined, it is found that 

𝑤 = 2𝜈 as in the hover case. However, if the Bernoulli’s principle is applied 

between the stations 0 and 1, 𝑝0 +
1

2
𝜌(𝑉 + 𝑤)2 = 𝑝0 +

1

2
𝜌𝑉2 + 𝑇/𝐴. When the 

equation is simplified, it is found that 𝑇/𝐴 =
1

2
𝜌(2𝑉𝑤 + 𝑤2). Since it is showed 

that 𝑤 = 2𝜈, thrust could be expressed as 𝑇 = 2𝜌𝐴(𝑉 + 𝜈)𝜈. If Eq. (4.1) is used, 

the relation between induced inflow and the climb velocity could be shown as: 

 𝜈(𝑉 + 𝜈) = 𝜈𝑖
2 (4.6) 

The solution of Eq. (4.6) w.r.t the total inflow 𝜈 is: 

 𝜈 = −
𝑉

2
+ √(

𝑉

2
)
2

+ 𝜈𝑖
2 (4.7) 
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Total power relation in the climb condition could be found as: 

 𝑃 = 𝑇(𝑉 + 𝜈) = 𝑇 ( 
𝑉

2
+ √(

𝑉

2
)
2

+ 𝜈𝑖
2 ) (4.8) 

Note that induced inflow is assumed to be uniform on the rotor and swirl effects in 

the air flow are neglected. 

4.2 Momentum Theory in Forward Flight 

Glauert introduced a momentum theory analysis for rotors in forward flight by 

combining inflow and forward flight speed. [11]   

 

Figure 4.3. Glauert inflow model for forward flight. [12] 

According to momentum conservation law, rotor thrust is expressed as 𝑇 = �̇�2𝜈 

where the mass flux �̇� = 𝜌𝐴𝑈. 𝑈 is the resultant velocity of air passing the rotor 

disk and 𝑈 is given as: 

 𝑈2 = (𝑉 𝑐𝑜𝑠 𝑖)2 + (𝑉 𝑠𝑖𝑛 𝑖 + 𝜈)2 = 𝑉2 + 2𝑉𝜈 𝑠𝑖𝑛 𝑖 + 𝜈2 (4.9) 
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By combining Eq. (4.9) with thrust and mass flux equalities, rotor thrust is obtained 

as: 

 𝑇 = 2𝜌𝐴𝜈𝑈 = 2𝜌𝐴𝜈√𝑉2 + 2𝑉𝜈 𝑠𝑖𝑛 𝑖 + 𝜈2 (4.10) 

From the relation given in Eq. (4.8), rotor power for forward flight is found as: 

 𝑃 = 𝑇(𝑉 𝑠𝑖𝑛 𝑖 + 𝜈) (4.11) 

To express velocity components which are parallel and normal to the rotor disk, let 

us define two non-dimensional parameters: advance ratio 𝜇 and inflow ratio 𝜆 

which are expressed as: 

 𝜇 =
𝑉 𝑐𝑜𝑠 𝑖

𝛺𝑅
 (4.12) 

 𝜆 =
𝑉 𝑠𝑖𝑛 𝑖 + 𝜈𝑖

𝛺𝑅
= 𝜇 𝑠𝑖𝑛 𝑖 + 𝜆𝑖 = 𝜇𝑧 + 𝜆𝑖  (4.13) 

By using Eq’s. (4.3) and (4.10), non-dimensional induced inflow ratio could be 

found as: 

 𝜆𝑖 =
𝐶𝑇

2√𝜇2 + 𝜆2
 (4.14) 

Eq. (4.14) is called as Glauert Inflow Formula. Although the equation is a fourth 

order polynomial equation, a Newton-Raphson solution could be implemented for 

inflow ratio 𝜆 [11]: 

 (𝜆𝑖)𝑛 =
𝐶𝑇

2√𝜇2 + (𝜆2)𝑛
 (4.15) 

 (𝜆)𝑛+1 = (𝜆)𝑛 −
(𝜆)𝑛 − 𝜇𝑧 − (𝜆𝑖)𝑛

1 + (𝜆𝑖)𝑛(𝜆)𝑛 ((𝜆2)𝑛 + 𝜇
2)⁄
𝑓 (4.16) 

𝑓 is the relaxation factor, and it could be taken as 0.5. Less than five iterations are 

usually enough to converge from the starting point: 

 (𝜆)1 =
𝜆ℎ
2  

√𝜇2 + (𝜆ℎ + 𝜇𝑧)2
+ 𝜇𝑧 (4.17) 
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Figure 4.4. Non-dimensional induced inflow ratio in trimmed forward flight. 

As it could be observed from Figure 4.4, total inflow could decrease up to ~%80 

w.r.t hover as the forward flight speed increases in a trimmed flight. From Eq. 

(4.11), it could be stated that if the thrust is constant, a decrease in induced inflow 

would decrease the induced power since induced power is related to the thrust and 

magnitude of the inflow. 

4.3 Blade Element Theory 

Blade Element Theory is a lifting-line-based theory. To apply blade element theory 

on a wing, wing’s aspect ratio should be high. [11] Since most of the helicopter 

blades have high aspect ratio, blade element theory could be thought as the 

foundation of most of helicopter aerodynamic analyses. 

In blade element theory, each finite length section of the blade is considered as an 

individual two-dimensional airfoil. Therefore, most of the design parameters of the 
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blade such as span or radius, chord, airfoil shape etc. are dealt with in detail in the 

blade element theory. Whereas momentum theory is stated to be an overall system 

analysis which could give useful information; however, a more detailed analysis is 

essential to design and analyze a rotor. 

According to [12], there were two main lines in the early development stages of the 

rotary-wing theories. First one was the momentum theory, second one was the 

blade element theory. In the 1920s, these two theories were combined.  

 

Figure 4.5. Blade section aerodynamics in hover. [12] 

In Figure 4.5, air velocities, aerodynamic forces and incidences are shown for a 

blade section. 𝜃 is the pitch angle of the section. Total air velocity experienced by 

the section is denoted as 𝑈 which has two components 𝑢𝑇 and 𝑢𝑃. 𝑢𝑇 is the 

tangential velocity component in the parallel direction to the disk plane. Whereas 

𝑢𝑃 is the axial velocity which is in the normal direction to the disk plane.  

 𝑢𝑇 = 𝛺𝑟 (4.18) 

 
𝑢𝑃 = 𝜈 (4.19) 

 𝑈 = √𝑢𝑇
2 + 𝑢𝑝2 ≅ 𝑢𝑇  (4.20) 
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Since 𝑢𝑇 ≫ 𝑢𝑃, resultant velocity 𝑈 could be approximated as 𝑢𝑇. Let us define 

the inflow angle: 

 𝜙 = 𝑡𝑎𝑛−1 (
𝑢𝑃
𝑢𝑇
) ≅

𝑢𝑃
𝑢𝑇

 (4.21) 

𝛼 is the angle of attack of the blade section and it is defined as the difference 

between pitch angle of the blade 𝜃 and inflow angle 𝜙. 

  𝛼 = 𝜃 − 𝜙 (4.22) 

Blade section produces aerodynamic lift and drag which are in the direction to the 

normal and parallel to the resultant airflow velocity, respectively. Sectional lift and 

drag force for a thin airfoil are given as: 

 𝐿′ =
1

2
𝜌𝑈2𝑐𝑐𝑙 =

1

2
𝜌𝑈2𝑐𝑐𝑙𝛼(𝜃 − 𝜙) (4.23) 

 𝐷′ =
1

2
𝜌𝑈2𝑐𝑐𝑑 =

1

2
𝜌𝑈2𝑐(𝑐𝑑0 + 𝑐𝑑𝛼2(𝜃 − 𝜙)

2) (4.24) 

𝜌 is the air density, 𝑐 is the chord of the blade. 𝑐𝑙𝛼, 𝑐𝑑0 and 𝑐𝑑𝛼2 are non-

dimensional lift curve slope, zero-lift and second order drag coefficients, 

respectively. If the aerodynamic forces in Figure 4.5 are resolved in the directions 

normal and parallel to the disk plane, resolved forces will be: 

 𝐹𝑧 = 𝐿′ 𝑐𝑜𝑠 𝜙 − 𝐷′ 𝑠𝑖𝑛 𝜙 ≅ 𝐿′ (4.25) 

 𝐹𝑥 = 𝐿
′ 𝑠𝑖𝑛 𝜙 + 𝐷′ 𝑐𝑜𝑠 𝜙 ≅ 𝐿′𝜙 + 𝐷′ (4.26) 

Hence, total thrust, torque and profile power of the rotor could be found as: 

 𝑇 = 𝑁𝑏∫𝐹𝑧𝑑𝑟 (4.27) 

 𝑄 = 𝑁𝑏∫𝐹𝑥𝑟𝑑𝑟 (4.28) 

 𝑃𝑜 = 𝛺𝑄 = 𝛺𝑁𝑏∫𝐹𝑥𝑟𝑑𝑟 (4.29) 

where 𝑁𝑏 is the number of blades of the rotor. 
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In Blade Element Theory, every blade element has a finite length. Therefore, 

integrals, infinitesimal lengths and radial locations in Eq’s. (4.27), (4.28) and (4.29) 

could be replaced with summation symbol, length of the blade elements and radial 

location of the blade elements respectively: 

 𝑇 = 𝑁𝑏 ∑ (𝐹𝑧)𝑛

𝑛=𝑁𝑏𝑒𝑚

𝑛=1

𝛥𝑟 (4.30) 

 𝑄 = 𝑁𝑏 ∑ (𝐹𝑥)𝑛𝑟𝑛

𝑛=𝑁𝑏𝑒𝑚

𝑛=1

𝛥𝑟 (4.31) 

 𝑃𝑜 = 𝛺𝑄 = 𝛺𝑁𝑏 ∑ (𝐹𝑥)𝑛𝑟𝑛𝛥𝑟

𝑛=𝑁𝑏𝑒𝑚

𝑛=1

 (4.32) 

where 𝛥𝑟 is the blade element length and it is given as 𝑅 𝑁𝑏𝑒𝑚⁄ . 
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 Blade Element Number 

To be able to calculate rotor thrust, torque and required power adequately, sufficient 

number of blade element must be chosen. To observe how blade element number 

affects the calculated thrust for the reference blade, Figure 4.6 is drawn. 

  

Figure 4.6. Calculated thrust versus the number of blade element. 

From Figure 4.6, it could be observed that even 5 elements could represent the thrust 

sufficiently since the thrust calculated between 5 number of blade elements and 100 

number of blade element deviates only about %0.84. However, to not lose any 

information and according to the suggestion of [14], 40 blade elements are chosen.  
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Figure 4.7. Blade elements and azimuth steps of the rotor (40 elements, 10° 

azimuth steps). 

4.4 Aerodynamic Root Cutout 

Due to the low tangential velocity, inner section of the blade experiences a low 

dynamic pressure resulting low aerodynamic forces. Therefore, this portion of the 

blade is neglected in terms of aerodynamic effects. Neglected portion of the blade 

is called as aerodynamic root cutout or root cutout. Root cutout is shown as 𝑟𝑅 

and generally taken as between 10% to 30% of the blade span [11]. Performance 

integrals such as Eq’s. (4.27), (4.28) and (4.29) should be taken from 𝑟𝑅 to 𝑅 rather 

than 0 to 𝑅. 
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 𝑇 = 𝑁𝑏∫ 𝐹𝑧𝑑𝑟
𝑅

𝑟𝑅

 (4.33) 

 𝑄 = 𝑁𝑏∫ 𝐹𝑥𝑟𝑑𝑟
𝑅

𝑟𝑅

 (4.34) 

 𝑃 = 𝛺𝑄 = 𝑁𝑏𝛺∫ 𝐹𝑥𝑟𝑑𝑟
𝑅

𝑟𝑅

 (4.35) 

Since the dynamic pressure is lower in the aerodynamic root cutout region 

compared to the radially outer sections of the blade, neglecting this portion of the 

blade has minor effect on performance calculations. Therefore, in Blade Element 

analysis, Eq.’s (4.30), (4.31) and (4.32) become respectively: 

 𝑇 = 𝑁𝑏 ∑ (𝐹𝑧)𝑛

𝑛=𝑁𝑏𝑒𝑚

𝑛=1

 (4.36) 

 𝑄 = 𝑁𝑏 ∑ (𝐹𝑥)𝑛𝑟𝑛

𝑛=𝑁𝑏𝑒𝑚

𝑛=1

𝛥𝑟 (4.37) 

 𝑃 = 𝛺𝑄 = 𝛺𝑁𝑏 ∑ (𝐹𝑥)𝑛𝑟𝑛𝛥𝑟

𝑛=𝑁𝑏𝑒𝑚

𝑛=1

 (4.38) 

4.5 Tip Losses 

As discussed in Section 4.3, Blade Element Theory is a lifting-line theory. 

However, blade element theory fails near the blade tip since blade element theory 

calculates a lift profile through the blade span, whereas actual lift profile drops 

sharply to the zero near blade tip due to three-dimensional aerodynamic effects. To 

add tip loss effect in to the thrust, it is assumed that the blade produces no lift but 

continues having profile drag after radial station 𝐵𝑅, where 𝐵 is called as tip loss 

factor. If the tip loss effect is not implemented to the calculations, the thrust and 
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power calculations will be overestimated since dynamic pressure over the blade is 

proportional to 𝑟2. 

 

Figure 4.8 Sectional lift profile over the blade span. [12] 

If the tip loss factor is included to the thrust integral with aerodynamic root cutout, 

thrust equation will be: 

 𝑇 = 𝑁𝑏∫ 𝐹𝑧𝑑𝑟
𝐵𝑅

𝑟𝑅

 (4.39) 

If Eq. (4.38) is re-written by using blade element analysis: 

 𝑇 = 𝑁𝑏 ∑ (𝐹𝑧)𝑛

𝑛=𝑁𝑏𝑒𝑚

𝑛=1

 (4.40) 

In this work, root cutout is taken as %20. In blade element analysis, first 5 blade 

elements of the rotor mesh in Figure 4.7 do not create any aerodynamic force. 

Therefore, in Eq’s. (4.37), (4.38) and (4.40) the summation should start from 6th 

element for the reference blade. Whereas tip loss effect 𝐵 could be taken as 

between 0.95 and 0.98 according to Leishman [14]. In this work, 𝐵 is taken as 0.97 

which corresponds the last element of the rotor mesh. Hence, in Eq. (4.40) the 

summation should end at 39th element for the reference blade. 
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4.6 Blade Element Momentum Theory 

To calculate thrust and power of the rotor, Momentum Theory and Blade Element 

Theory could be combined, and it is called as Blade Element Momentum Theory. 

According to Blade Element Momentum Theory, lift and drag forces of the airfoil 

are obtained by using Blade Element Theory, whereas Momentum Theory is used to 

find inflow which directly effects lift and drag forces since inflow decreases the 

angle of attack experienced by the airfoil section as showed in Eq’s. (4.21) and 

(4.22). 

Since the thrust is affected by the inflow and inflow is related with the thrust, to be 

able to solve the thrust and the inflow, an iterative solution procedure could be 

implemented such that: 

1. Assume a starting thrust value. Usually, it is wise to start from thrust is equal 

to total weight of the aircraft. 

2. Find the uniform induced inflow according to the thrust value by using Eq. 

(4.14). (If the forward speed of the helicopter is zero, 𝜇 = 0 and 𝜆 = 𝜆𝑖) 

3. Insert the inflow found in step-2 in to Eq. (4.40) and calculate new thrust.  

4. Return to step-2 until a defined convergence criterion is satisfied such as 

𝜆𝑒𝑟𝑟 ≥ |𝜆𝑛 − 𝜆𝑛−1| or 𝑇𝑒𝑟𝑟 ≥ |𝑇𝑛 − 𝑇𝑛−1| where 𝜆𝑒𝑟𝑟 and 𝑇𝑒𝑟𝑟 are the error 

tolerances, 𝑛 is the iteration step number. 
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4.7 Helicopter Rotor in Forward Flight 

Forward flight analysis needs more concern than hover analysis since helicopter 

rotor experiences not only rotational speed but also forward velocity in forward 

flight which creates an unsymmetrical airspeed profile on the rotor.  

 

Figure 4.9. Helicopter rotor in forward flight. [12] 

In Figure 4.9, it is seen that one side of the rotor is called as advancing side since 

airspeed experienced by the rotor is the summation of the rotational speed and 

forward speed, whereas the other side is called as retreating side. This portion of 

the rotor is called as retreating since airspeed of this side is the difference of the 

rotational speed and forward speed. If this difference is negative, there occurs a 

special region which is called as reverse flow region. In reverse flow region, 

airflow is passing the airfoil not from leading edge to trailing edge but from trailing 

edge to leading edge. Therefore, special considerations are necessary to obtain 

aerodynamic loads in this region. 
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Figure 4.10. Reverse flow region in forward flight. [12] 

In Figure 4.10, reverse flow region is illustrated exaggeratedly. The ratio of rotor 

radius to reverse flow region’s diameter is equal to the advance ratio 𝜇. Although 

reverse flow illustration covers about %70 radius of the rotor in Figure 4.10, its 

maximum is usually about %40 of the rotor radius since conventional helicopter’s 

maximum advance ratio is about 0.4. 

As stated above, serious aerodynamic analyses are needed since the flow 

characteristics are different from the rest of the rotor in reverse flow region. 

However, in this work, reference helicopter reaches advance ratio up to 0.15. In the 

first %10 of the rotor, there is no airfoil. The region between %10 and %20 of the 

blade lies on the aerodynamic root cutout region in which all aerodynamic forces 

are neglected. Hence, the reverse flow region is not a concern for this work under 

the given assumptions. 
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 Experienced Tangential Velocity by the Blade 

As discussed in the very beginning of Section 4.7, experienced airspeed by the 

blade changes with both radial location and azimuth angle 𝜓. Let us define 

tangential and radial velocity component for the blade in a rotating frame with the 

blade: 

 𝑢𝑇 = 𝛺𝑟 + 𝑉 𝑠𝑖𝑛 𝜓 (4.41) 

 𝑢𝑅 = 𝑉 𝑐𝑜𝑠 𝜓 (4.42) 

Tangential velocity distribution over the rotor in forward flight is illustrated in 

Figure 4.11. Maximum tip speeds of the blade are Ω𝑅 + 𝑉 and Ω𝑅 − 𝑉 in the 

advancing side and in the retreating side respectively. 

 

Figure 4.11. Tangential velocity field of the main rotor at 35 m/s. 
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4.8 Compressibility Corrections 

Compressibility effects become more important as Mach Number increases and as 

it could be seen in Figure 4.12, reference blade’s Mach Number reaches almost 0.7 

Mach in hover and exceeds 0.75 in maximum forward flight speed; therefore, 

compressibility effects should be included in the analyses. 

 

Figure 4.12. Reference blade’s local Mach Number in hover and at 35 m/s. 
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By referring Ref. [1], non-dimensional lift and drag coefficients 𝑐𝑙 and 𝑐𝑑 could be 

written in a compressible regime as: 

 𝑐𝑑 =
𝑐𝑙𝑖𝑛𝑐𝑜𝑚𝑝

√1 −𝑀2
 (4.43) 

 𝑐𝑑 =
𝑐𝑑𝑖𝑛𝑐𝑜𝑚𝑝

√1 −𝑀2
 (4.44) 

where 𝑐𝑙𝑖𝑛𝑐𝑜𝑚𝑝  and 𝑐𝑑𝑖𝑛𝑐𝑜𝑚𝑝  are the 𝑐𝑙 and 𝑐𝑑 expressed in Section 3.2.2 and 
1

√1−𝑀2
 

is called as compressibility correction factor. 

Figure 4.13 shows that the compressibility correction factor could increase up to 

%30 in hover and %50 in forward flight. In other words, local lift coefficient 𝑐𝑙 and 

local drag coefficient 𝑐𝑑 could increase up to %30 in hover and %50 in forward 

flight. Therefore, compressibility effect must be considered to increase the fidelity 

of the performance calculations.  
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Figure 4.13. Local compressibility correction factor in hover and at 35 m/s. 
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4.9 Rotor Blade Control 

Control of the blades are done by the swashplate. Moving up and down the 

swashplate controls the collective pitch input, whereas tilting the swashplate 

creates the cyclic pitch input. 

 

Figure 4.14. Collective pitch control. [14] 

 

Figure 4.15. Cyclic pitch control. [14] 

Swashplate rotates with the main rotor shaft; therefore, cyclic control is a periodic 

function having period of blade azimuth angle 𝜓. Periodic functions could be 

represented by a Fourier Series [11]; therefore, cyclic input could be defined as: 

 
𝜃(𝑟, 𝜓) = 𝜃0 + 𝜃𝑡𝑤(𝑟, 𝜓) + 𝜃1𝑐 𝑐𝑜𝑠 𝜓 + 𝜃1𝑠 𝑠𝑖𝑛 𝜓

+ 𝜃2𝑐 𝑐𝑜𝑠 2𝜓 + 𝜃2𝑠 𝑠𝑖𝑛 2𝜓 +⋯+ 𝜃𝑁𝑐 𝑐𝑜𝑠 𝑁𝜓 + 𝜃𝑁𝑠 𝑠𝑖𝑛𝑁𝜓
 (4.45) 

𝜃𝑡𝑤 is the twist of the blade which contains both torsional deformation and blade 

design twist. Since the reference blade does not have a twist in design, 𝜃𝑡𝑤 is 
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considered as elastic twist only. Although 𝜃𝑡𝑤 is not a control input, it has an effect 

over the blade loads and performance of the aircraft. Note that since all the loads 

acting on the blade are harmonic, 𝜃𝑡𝑤 is a function of azimuth angle 𝜓 as well. 

 Rotor Planes 

There could be relative motions between the rotor and the main frame of the 

helicopter. To describe these relative motions and make the calculations, some 

reference planes are defined. 

4.9.1.1 Reference Plane (Horizontal Plane) 

As the name of the plane suggests, this plane lies on the horizontal axis and global 

motion of the airframe is defined w.r.t this plane. 

4.9.1.2 Disk Plane (Hub Plane) 

Disk plane is the plane whose normal is in the direction of the rotor shaft. In other 

words, disk plane is perpendicular to the rotor shaft. Rotor’s relative motions w.r.t 

the fuselage are defined in this plane. 

4.9.1.3 Tip-Path Plane 

Tip-path plane is defined by connecting the tip positions of the blades during one 

complete revolution of the rotor. Orientation of the tip-path plane defines the 

flapping angles; therefore, the thrust is perpendicular to the TPP. 

4.9.1.4 No-Feathering Plane 

This plane is defined firstly by Gessow & Myers in 1952 [14]. This plane is 

defined by cyclic pitch. Cyclic controls 𝜃1𝑐 and 𝜃1𝑠 are observed as zero w.r.t the 

no-feathering plane.  
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 Blade Motion 

Due to the asymmetrical velocity over the blade, aerodynamic loads on the blade 

would have an asymmetrical distribution as well. Since the velocity field and 

aerodynamic loads are periodic with azimuth angle 𝜓, blade motion is also periodic 

with azimuth angle 𝜓. 

Let us define flap angle 𝛽 and lag angle 𝜁. 𝛽 is the out-of-plane bending angle 

between the blade and the disk plane and 𝛽 is called as flap angle. 𝛽 is defined as 

positive when the blade bends upward direction. 𝜁 is the in-plane bending angle of 

the blade w.r.t to the hub. 𝜁 is called as lag angle and defined as positive when the 

blade bends in the direction of opposite direction of the rotation. 

 

Figure 4.16. Flap and lag angle. [12] 

Flap angle 𝛽 and lag angle 𝜁 are periodic with azimuth angle 𝜓 as well. Therefore, 

they could be expressed as Fourier Series as well: 

 

𝛽(𝜓) = 𝛽0 + 𝛽1𝑐 𝑐𝑜𝑠 𝜓 + 𝛽1𝑠 𝑠𝑖𝑛𝜓 + 𝛽2𝑐 𝑐𝑜𝑠 2𝜓 + 𝛽2𝑠 𝑠𝑖𝑛 2𝜓 +⋯

= 𝛽0 +∑(𝛽𝑛𝑐 𝑐𝑜𝑠(𝑛𝜓) + 𝛽𝑛𝑠 𝑠𝑖𝑛(𝑛𝜓))

∞

𝑛=1

 (4.46) 

 

𝜁(𝜓) = 𝜁0 + 𝜁1𝑐 𝑐𝑜𝑠 𝜓 + 𝜁1𝑠 𝑠𝑖𝑛 𝜓 + 𝜁2𝑐 𝑐𝑜𝑠 2𝜓 + 𝜁2𝑠 𝑠𝑖𝑛 2𝜓 +⋯

= 𝜁0 +∑(𝜁𝑛𝑐 𝑐𝑜𝑠(𝑛𝜓) + 𝜁𝑛𝑠 𝑠𝑖𝑛(𝑛𝜓))

∞

𝑛=1

 (4.47) 
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In general, lowest harmonics are enough to describe the blade motion in forward 

flight accurately [11]. Therefore, mean value and first harmonics are used in this 

work: 

 𝜃(𝜓, 𝑟) = 𝜃0 + 𝜃𝑡𝑤(𝜓, 𝑟) + 𝜃1𝑐 𝑐𝑜𝑠 𝜓 + 𝜃1𝑠 𝑠𝑖𝑛𝜓 (4.48) 

 𝛽(𝜓) = 𝛽0 + 𝛽1𝑐 𝑐𝑜𝑠 𝜓 + 𝛽1𝑠 𝑠𝑖𝑛 𝜓 (4.49) 

 𝜁(𝜓) = 𝜁0 + 𝜁1𝑐 𝑐𝑜𝑠 𝜓 + 𝜁1𝑠 𝑠𝑖𝑛 𝜓 (4.50) 

 

 

Figure 4.17. Rotor flap angle harmonics. β0 coning angle, β1c longitudinal tip-

path-plane tilt (left view), β1s lateral tip-path-plane tilt (aft view). [12] 

 

 

Figure 4.18. Rotor lag angle harmonics. ζ0 mean lag, ζ1c lateral lag, ζ1s 

longitudinal lag (top view). [12] 

In this work, since their influence on the aerodynamic loads are negligible, lag 

angle 𝜁 and its effects are ignored.  
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 Flapping Motion 

In articulated rotors, a flapping hinge is introduced at the hub which adds an out-of-

plane bending degree of freedom to the blade so that out-of-plane bending stress is 

decreased at the hub. 

 

Figure 4.19. Flapping motion and forces on the blade. [12] 

To analyze rotor behavior and trim conditions in forward flight, blade flapping 

motion is needed to be examined. Rotor flapping equation of motion is constructed 

for rigid blades having a flapping hinge at the root. In Figure 4.19, forces action on 

a mass element is shown. For small angle 𝛽, these forces are: 

• Aerodynamic force: 𝐹𝑧 in the normal direction of the blade. Moment arm of 

this force about the root is 𝑟. 

• Centrifugal force: 𝑚𝛺2𝑟𝑑𝑟 in the direction of radially outward. Moment 

arm of this force about the root is 𝑧 = 𝑟𝛽. 

• Inertial force: 𝑚�̈�𝑑𝑟 = 𝑚𝑟�̈�𝑑𝑟 in the opposite direction of the flap motion. 

Moment arm of this force about the root is 𝑟. 

By integrating these forces with their moments arm from root to the tip of the 

blade, we would obtain: 

 ∫ 𝑚𝑟�̈�𝑟𝑑𝑟
𝑅

0

+∫ 𝑚𝛺2𝑟(𝑟𝛽)𝑑𝑟
𝑅

0

−∫ 𝐹𝑧𝑟𝑑𝑟
𝑅

0

= 0 (4.51) 
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Since the blade is assumed to be rigid, 𝛽 is constant over the blade radius. By 

taking out 𝛽 from the integral expressions, we obtain: 

 (∫ 𝑟2𝑚𝑑𝑟
𝑅

0

) (�̈� + 𝛺2𝛽) = ∫ 𝐹𝑧𝑟𝑑𝑟
𝑅

0

 (4.52) 

Let us define 𝐼𝑏 = (∫ 𝑟2𝑚𝑑𝑟
𝑅

0
) which is the moment of inertia of the blade about 

the flap hinge and re-write Eq. (4.52): 

 (�̈� + 𝛺2𝛽) =
1

𝐼𝑏
∫ 𝐹𝑧𝑟𝑑𝑟
𝑅

0

 (4.53) 

From Eq. (4.53), it is found that first flapping natural frequency of the blade is 

exactly equal to the rotor speed Ω if there is a flapping hinge at the root. 

4.10 Forward Flight Aerodynamics 

In this section, the details of the aerodynamic analyses and blade dynamics will be 

discussed for the forward flight condition. The assumptions made in this section 

are: 

• Loads are steady, any unsteady effects are neglected. 

• Inflow is assumed to be uniform over the main rotor. 

• Shear center and aerodynamic center of the blade does not change with 

rotation and forward flight. 

• Any interaction between the main rotor and the fuselage or the tail rotor is 

neglected. 

• In references such as [4], [11], [12], [14], [19] rotor forces are calculated by 

taking integrals and assuming a linear twist. In this work, main aim is to obtain the 

twist field. Therefore, analytical expression of the elastic twist field must be found. 

As a result, all the calculations are done by using Blade Element Momentum 

Theory in which local forces, and local twists are combined to find the rotor forces 

instead of taking integrals analytically. 
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Tangential and radial velocity components experienced by the airfoil was given in 

Eq’s. (4.41) and (4.42). Let us define the perpendicular component of the velocity 

𝑢𝑃 by combining with flapping effect: 

 𝑢𝑃 = 𝜈 + 𝑟�̇� + 𝑢𝑅𝛽 (4.54) 

First term appearing in Eq. (4.54) is the inflow, second term is the flapping speed, 

and the last term is normal component of the radial velocity. Note that since 𝛽 is 

small, it is assumed that sin 𝛽 ≅ 𝛽. 

 

Figure 4.20. Normal component of the radial velocity to the blade. [12] 

 

Figure 4.21. Blade section aerodynamics in forward flight. [12] 
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If the forward flight velocity is set to zero, the velocity components 𝑢𝑇, 𝑢𝑃 and 𝑢𝑅 

in Eq’s. (4.41), (4.54) and (4.42) become as given in Eq’s. (4.18), (4.19) and zero 

respectively since time rate of change of flapping angle is zero due to the 

symmetrical load field in hover. 

Inflow angle 𝜙, angle of attack 𝛼, normal force 𝐹𝑧, in-plane force 𝐹𝑥, blade pitch 

angle 𝜃, perpendicular velocity component of the blade 𝑢𝑃, tangential velocity 

component of the blade 𝑢𝑇, radial velocity component of the blade 𝑢𝑅 were given 

in Eq’s. (4.21), (4.22), (4.25), (4.26), (4.48), (4.54), (4.41) and (4.42) respectively. 

Resultant velocity 𝑈, and radial force component is given as: 

 𝑈 = √𝑢𝑇
2 + 𝑢𝑃

2 + 𝑢𝑅
2 ≅ 𝑢𝑇 (4.55) 

 𝐹𝑟 = −𝛽𝐹𝑧 (4.56) 

Since main velocity component the blade experiences is the tangential velocity 𝑢𝑇 

and 𝑢𝑇 ≫ 𝑢𝑃, 𝑢𝑅, resultant velocity could be approximated as 𝑈 ≅ 𝑢𝑇. In Eq. 

(4.56), small angle is assumed and radial drag force is neglected. 

4.11 Rotor Forces and Moments in Forward Flight 

Rotor forces are defined relative to the reference plane described in Section 4.9.1. 

Thrust 𝑇 is defined in normal direction to the plane, rotor longitudinal force 𝐻 and 

lateral force 𝑌 are defined in the plane. Thrust 𝑇 is given in Eq. (4.27). Let us 

obtain the rotor longitudinal force 𝐻 and lateral force 𝑌: 

 𝐻 = 𝑁𝑏∫ (𝐹𝑥 𝑠𝑖𝑛 𝜓 + 𝐹𝑟 𝑐𝑜𝑠 𝜓)𝑑𝑟
𝑅

0

 (4.57) 

 𝑌 = 𝑁𝑏∫ (−𝐹𝑥 𝑐𝑜𝑠 𝜓 + 𝐹𝑟 𝑠𝑖𝑛 𝜓)𝑑𝑟
𝑅

0

 (4.58) 

where 𝐹𝑥 and 𝐹𝑟 are given in Eq’s. (4.26) and (4.56). 
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Figure 4.22. Rotor forces and moments in forward flight. [12] 

In forward flight, due to control inputs, blade flapping and the dynamic pressure 

difference between advancing side and retreating side, rotor hub moments 𝑀𝑋 and 

𝑀𝑌 occur. Rotor hub moments are given as: 

 𝑀𝑋 = 𝑁𝑏∫ 𝐹𝑧 𝑠𝑖𝑛 𝜓 𝑟𝑑𝑟
𝑅

0

 (4.59) 

 𝑀𝑌 = −𝑁𝑏∫ 𝐹𝑧 𝑐𝑜𝑠 𝜓 𝑟𝑑𝑟
𝑅

0

 (4.60) 

Note that integrating limits in Eq’s. (4.59) and (4.60) should be updated as from 

aerodynamic root cutout 𝑟𝑅 and to the tip loss 𝐵𝑅. 

Figure 4.22 shows the rotor forces and moments in the reference plane. Since tip-

path plane and no-feathering plane are defined w.r.t the reference plane, the rotor 

forces, the inflow, and the rotor incidence 𝑖 could be represented in these planes as 

well. 

 𝜆 = 𝜆𝑇𝑃𝑃 − 𝜇𝛽1𝑐 = 𝜆𝑁𝐹𝑃 + 𝜇𝜃1𝑠 (4.61) 

 𝑖 = 𝑖𝑇𝑃𝑃 − 𝛽1𝑐 = 𝑖𝑁𝐹𝑃 + 𝜃1𝑠 (4.62) 

 𝐻 = 𝐻𝑇𝑃𝑃 − 𝑇𝛽1𝑐 = 𝐻𝑁𝐹𝑃 + 𝑇𝜃1𝑠  (4.63) 

 𝑌 = 𝑌𝑇𝑃𝑃 − 𝑇𝛽1𝑠 = 𝑌𝑁𝐹𝑃 − 𝑇𝜃1𝑐 (4.64) 

Cyclic controls and flapping angles are usually small; therefore, it is assumed that 

small angle assumption is valid for flapping angles and cyclic control inputs. 

𝑀𝑌 𝑀𝑋 
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Thrust is the main rotor force component and most of the time it is much greater 

than the other rotor forces. Hence, it is adequate to assume that rotor thrust is 

independent of the reference plane. 

 Flapping Hinge Offset 

Due to the flapping motion, air moves in the direction of inflow which is 

perpendicular to the tangential speed of the blade section. Therefore, flapping 

motion directly affects the aerodynamics of the blade by affecting the angle of 

attack of the blade. Since flapping motion occurs about the flapping hinge, flapping 

hinge offset is an important parameter. Flap hinge offset 𝑒 is defined as the ratio of 

the distance of the hinge to the blade radius. 

 

Figure 4.23. Flap hinge offset for an articulated rotor. [12] 

By referring Ref. [12], define a piecewise function to describe the vertical 

displacement of the blade about a flap hinge offset, 

 𝜂 = {
𝑎(𝑟 − 𝑒𝑅) 𝑟 ≥ 𝑒𝑅

0 𝑟 < 𝑒𝑅
 (4.65) 

where 𝑎 is constant to normalize the 𝜂. If 𝜂 is normalized such that 𝜂(𝑅) = 𝑅, then 

a becomes as 𝑎 = 1/(1 − 𝑒). If the flap-hinge offset is set to zero, then 𝜂 becomes 

as 𝑟. Since the flapping motion is described w.r.t the flap-hinge, perpendicular 

velocity experienced by the blade section must be re-written as well: 

 𝑢𝑃 = 𝜈 + 𝜂�̇� + 𝑢𝑅𝜂
′𝛽 (4.66) 
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Re-consider the moment equilibrium in Section 4.9.3 by implementing flap hinge 

offset: 

• Aerodynamic force: 𝐹𝑧 in the normal direction of the blade. Moment arm of 

this force about the flap hinge is (𝑟 − 𝑒𝑅). 

• Centrifugal force: 𝑚𝛺2𝑟𝑑𝑟 in the direction of radially outward. Moment 

arm of this force about the flap hinge is 𝑧 = 𝜂𝛽. 

• Inertial force: 𝑚�̈�𝑑𝑟 = 𝑚𝜂�̈�𝑑𝑟 in the opposite direction of the flap motion. 

Moment arm of this force about the flap hinge is (𝑟 − 𝑒𝑅). 

By integrating these forces with their moments arm from the flap hinge to the tip of 

the blade, we would obtain: 

 ∫ 𝑚𝜂�̈�(𝑟 − 𝑒𝑅)𝑑𝑟
𝑅

𝑒𝑅

+∫ 𝑚𝛺2𝑟(𝜂𝛽)𝑑𝑟
𝑅

𝑒𝑅

−∫ 𝐹𝑧(𝑟 − 𝑒𝑅)𝑑𝑟
𝑅

𝑒𝑅

= 0 (4.67) 

From Eq. (4.65), replace (𝑟 − 𝑒𝑅) with 𝜂 𝑎⁄ . 

 ∫ 𝑚
𝜂2

𝑎
�̈�𝑑𝑟

𝑅

𝑒𝑅

+∫ 𝑚𝛺2𝑟(𝜂𝛽)𝑑𝑟
𝑅

𝑒𝑅

= ∫ 𝐹𝑧
𝜂

𝑎
𝑑𝑟

𝑅

𝑒𝑅

= 0 (4.68) 

 ∫ 𝑚𝜂2�̈�𝑑𝑟
𝑅

𝑒𝑅

+ 𝑎∫ 𝑚𝛺2𝑟(𝜂𝛽)𝑑𝑟
𝑅

𝑒𝑅

= ∫ 𝐹𝑧𝜂𝑑𝑟
𝑅

𝑒𝑅

= 0 (4.69) 

In [18] a new flap frequency parameter 𝜉 is defined to express Eq. (4.69). By using 

𝜉, re-write Eq. (4.69): 

 �̈� + (𝜉𝛺)2𝛽 =
1

𝐼�̂�
∫ 𝐹𝑧𝜂𝑑𝑟
𝑅

𝑒𝑅

 (4.70) 

where 𝐼�̂� = ∫ 𝜂2𝑚𝑑𝑟
𝑅

𝑒𝑅
. Note that if 𝑒 is zero 𝐼�̂� = 𝐼𝑏 and 𝜉 = 1. 

For an articulated rotor having uniform blades and no flap hinge spring, flap 

frequency is given in [4]: 

 𝜉2 = 1 +
3

2

𝑒

1 − 𝑒
 (4.71) 
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where 𝑒 is typically around 0.04 for articulated rotors which gives 𝜉 as about 1.06. 

[4] 

On the other hand, hingeless rotors do not have any hinges as their name suggests. 

Johnson [12] suggests that first out-of-plane bending is mostly dominated by the 

rotor nominal speed as it is showed in Section 3.2.1 and discussed in Section 4.9.3. 

Therefore, by using Eq. (4.71) an equivalent flap hinge offset could be found: 

 𝑒𝑒𝑞 =

2
3
(𝜉2 − 1)

1 +
2
3
(𝜉2 − 1)

 (4.72) 

For hingeless rotors, non-dimensional flap frequency 𝜉 could be written as the ratio 

of the first out-of-plane bending natural frequency to the rotor speed.  

 𝜉 =
𝜔ℎ
𝛺

 (4.73) 

Natural frequencies and mode shapes of the reference blade is given in Section 

3.2.1. From Table 3.3, non-dimensional flap frequency 𝜉 of the reference blade 

could be found as 1.08. 

Right-hand side of Eq. (4.70) could be written as: 

 ∫ 𝐹𝑧𝜂𝑑𝑟
𝑅

𝑒𝑅

= ∫ (𝐿′ 𝑐𝑜𝑠 𝜙 − 𝐷′ 𝑠𝑖𝑛 𝜙)𝜂𝑑𝑟
𝑅

𝑒𝑅

 (4.74) 

From Figure 3.6, it could be seen that 𝑐𝑙 ≫ 𝑐𝑑 in the operating range of the 

reference helicopter. In addition, 𝜙 is given as 𝑢𝑃/𝑢𝑇 in Eq. (4.21) and it is known 

that 𝑢𝑇 ≫ 𝑢𝑃; therefore, cos𝜙 could be approximated as one. Hence, Eq. (4.74) 

could be approximated as: 

 ∫ 𝐹𝑧𝜂𝑑𝑟
𝑅

𝑒𝑅

≅ ∫ 𝐿′𝜂𝑑𝑟
𝑅

𝑒𝑅

= ∫
1

2
𝜌𝑈2𝑐𝑐𝑙𝜂𝑑𝑟

𝑅

𝑒𝑅

 (4.75) 
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To further simplify Eq. (4.75), resultant velocity 𝑈 could be approximated as 𝑢𝑇, 

since 𝑢𝑇 ≫ 𝑢𝑃, 𝑢𝑅. Hence, Eq. (4.75) could be written as: 

 ∫ 𝐹𝑧𝜂𝑑𝑟
𝑅

𝑒𝑅

≅ ∫
1

2
𝜌𝑐𝑐𝑙(𝑢𝑇

2𝜃 − 𝑢𝑇𝑢𝑃)𝜂𝑑𝑟
𝑅

𝑒𝑅

 (4.76) 

If Eq. (4.76) is put into the flapping equation Eq. (4.70), we would obtain: 

 �̈� + (𝜉𝛺)2𝛽 ≅
1

𝐼�̂�
∫

1

2
𝜌𝑐𝑐𝑙(𝑢𝑇

2𝜃 − 𝑢𝑇𝑢𝑃)𝜂𝑑𝑟
𝑅

𝑒𝑅

 (4.77) 

Note that the pitch angle 𝜃 term in Eq. (4.77) has a twist term 𝜃𝑡𝑤(𝑟, 𝜓) which is 

still not known. To be able to solve Eq. (4.77), twist term 𝜃𝑡𝑤(𝑟, 𝜓) must be found. 

Therefore, in the following section details of the 𝜃𝑡𝑤(𝑟, 𝜓) is discussed. 

4.12 Torsional Twist and Divergence Speed 

As it is discussed in the very beginning of Ch. 4, static aeroelasticity studies the 

interaction between the structural deformation and steady aerodynamic forces. 

When the structure is loaded by an aerodynamic force, it will deform resulting a 

change in the aerodynamic loading. Therefore, there occurs a cycle between 

structural deformation and aerodynamic loads. It is needed that this cycle 

converges to a point where structural deformation is in an equilibrium with 

aerodynamic loads. If the convergence could not be achieved, the structure may fail 

eventually. Therefore, static aeroelasticity is mainly interested on two concepts. 

First one is the divergence, in order to prevent any structural failure. Second one is 

the equilibrium state to analyze aerodynamic loads and elastic deformation on the 

wing. 
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 Divergence Speed 

As it is discussed above, divergence speed is the speed where the interaction 

between structural deformations and aerodynamic loads are not in an equilibrium 

such that as the structure deforms, aerodynamic loads increases resulting a greater 

deformation on the structure. 

To examine the divergence speed, Hodges [10] suggests a wind-tunnel model. In 

the wind-tunnel model, airfoil is supported with a rigid hinge and a torsional spring 

at its elastic axis which constrains the plunging motion pitching direction and add a 

torsional stiffness to the system in the pitching direction respectively.  

 

Figure 4.24. Wind-tunnel model of the airfoil. [10]  

In Figure 4.24, 𝑥𝑂 is the distance between the leading edge and elastic axis (shear 

center), 𝑥𝑎𝑐 is the distance between the leading edge and aerodynamic center, 𝑥𝑐𝑔 

is the distance between the leading edge and center of gravity of the airfoil, 𝑐 is the 

chord of the airfoil, 𝑘 is the torsional spring stiffness. 
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By assuming thin airfoil theory is valid, sectional lift and aerodynamic moment are 

given as: 

 𝐿 =
1

2
𝜌𝑈2𝑐𝑐𝑙𝛼(𝛼𝑟 + 𝛿) (4.78) 

 𝑀𝑎𝑐 =
1

2
𝜌𝑈2𝑐2𝑐𝑚 (4.79) 

𝛼𝑟 and 𝛿 in Eq. (4.78) are rigid angle of attack of the airfoil and elastic increment 

of the angle of attack respectively. 𝑐𝑚 is the non-dimensional aerodynamic pitching 

moment coefficient and it could be assumed as constant. 

If moment equilibrium is written for Figure 4.24 w.r.t connection point by using 

Eq’s (4.78) and (4.79), we would obtain: 

 
1

2
𝜌𝑈2𝑐2𝐶𝑀 +

1

2
𝜌𝑈2𝑐𝐶𝐿𝛼(𝛼𝑟 + 𝛿)(𝑥𝑜 − 𝑥𝑎𝑐) −𝑊(𝑥𝑜 − 𝑥𝑐𝑔) = 𝑘𝛿 (4.80) 

Solve Eq. (4.80) for the elastic increment of the angle of attack 𝛿: 

 𝛿 =

1
2𝜌𝑈

2𝑐2𝐶𝑀 +
1
2𝜌𝑈

2𝑐𝐶𝐿𝛼𝛼𝑟(𝑥𝑜 − 𝑥𝑎𝑐) −𝑊(𝑥𝑜 − 𝑥𝑐𝑔)

𝑘 −
1
2𝜌𝑈

2𝑐𝐶𝐿𝛼(𝑥𝑜 − 𝑥𝑎𝑐)
 (4.81) 

From Eq. (4.81), it could be observed that if the denominator of the equation 

becomes zero, elastic increment 𝛿 blows up i.e., 𝛿 diverges. Let us define the 

divergence velocity 𝑈𝐷 which makes the denominator of Eq. (4.81) zero: 

 𝑘 −
1

2
𝜌𝑈𝐷

2𝑐𝐶𝐿𝛼(𝑥𝑜 − 𝑥𝑎𝑐) = 0 (4.82) 

If Eq. (4.82) is solved for the divergence speed 𝑈𝐷: 

 𝑈𝐷 = √
2𝑘

𝜌𝑐𝐶𝐿𝛼(𝑥𝑜 − 𝑥𝑎𝑐)
 (4.83) 

If the aerodynamic center of the airfoil 𝑥𝑎𝑐 is coincident with the elastic axis 

location 𝑥𝑜 i.e., (𝑥𝑜 = 𝑥𝑎𝑐), divergence speed approaches to infinity (𝑈𝐷 → ∞). If 

the aerodynamic center is behind the elastic axis (𝑥𝑜 < 𝑥𝑎𝑐), there is no real 
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solution for the divergence speed 𝑈𝐷; therefore, no divergence occurs in any speed. 

Hence, while designing a wing or a blade, it should be intended that 𝑥𝑜 − 𝑥𝑎𝑐 is 

minimized to increase the divergence speed and avoid any divergence related 

failure. For the reference blade whose properties are given in Ch. 3, shear center 𝑥𝑜 

is measured as 2.2 cm from the leading edge. Whereas, the aerodynamic center 𝑥𝑎𝑐 

of the blade is at the quarter chord which is 2.25 cm from the leading edge. Since 

𝑥𝑜 < 𝑥𝑎𝑐 is satisfied, it could be concluded that there exists no divergence speed 

for the reference blade. Note that for the static aeroelastic analyses it is assumed 

that shear center and aerodynamic center of the reference blade does not change. 

 Torsional Twist of the Helicopter Blades 

As it is discussed in the very beginning of Section 4.12, torsional twist and the 

aerodynamic loads are related to each other. This coupling might be an important 

relation for the lifting surfaces since structural deformations cause aerodynamic 

loads to change.  

In [15], torsional twist relation is given as: 

 𝑀′ = 𝐺𝐽
𝑑𝜃𝑡𝑤
𝑑𝑟

 (4.84) 

where 𝑀′ is: 

 𝑀′ = 𝐹𝑧(𝑥𝑜 − 𝑥𝑎𝑐) (4.85) 

If 𝐹𝑧 in Eq. (4.85) is approximated as it is done in Eq. (4.75): 

 𝑀′ =
1

2
𝜌𝑐𝑐𝑙𝛼(𝑢𝑇

2𝜃 − 𝑢𝑇𝑢𝑃)(𝑥𝑜 − 𝑥𝑎𝑐) (4.86) 

Blade pitch angle 𝜃 has a twist term as well. Therefore, Eq. (4.86) could be re-

written as: 

 𝑀′ =
1

2
𝜌𝑐𝑐𝑙𝛼(𝑢𝑇

2𝜃𝑐𝑜𝑛 + 𝑢𝑇
2𝜃𝑡𝑤 − 𝑢𝑇𝑢𝑃)(𝑥𝑜 − 𝑥𝑎𝑐) (4.87) 
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When Eq. (4.87) is put into Eq. (4.84): 

 𝐺𝐽
𝑑𝜃𝑡𝑤
𝑑𝑟

−
1

2
𝜌𝑢𝑇

2𝑐𝑐𝑙𝛼𝜃𝑡𝑤 =
1

2
𝜌𝑐𝑐𝑙𝛼(𝑢𝑇

2𝜃𝑐𝑜𝑛 − 𝑢𝑇𝑢𝑃)(𝑥𝑜 − 𝑥𝑎𝑐) (4.88) 

In Eq. (4.88), tangential and perpendicular velocity component 𝑢𝑇, 𝑢𝑃 are a 

function of radial distance 𝑟 due to rotation and blade flapping respectively. In 

addition, lift curve slope clα is a function of radial distance 𝑟 as well due to the 

compressibility effect. Therefore, Eq. (4.88) is very hard to solve analytically. 

Therefore, a numerical solution should be implemented. An iterative solution 

procedure could be implemented from starting (𝜃𝑡𝑤)0 is zero as following: 

 (𝑀′)𝑛 =
1

2
𝜌𝑐𝑐𝑙𝛼(𝑢𝑇

2𝜃𝑐𝑜𝑛 + 𝑢𝑇
2(𝜃𝑡𝑤)𝑛−1 − 𝑢𝑇𝑢𝑃)(𝑥𝑜 − 𝑥𝑎𝑐) (4.89) 

Where subscript 𝑛 is the iteration step. When (𝑀′)𝑛 is solved by using Eq. (4.89),  

(𝑀′)𝑛 becomes a constant w.r.t radial position 𝑟. Therefore, (𝜃𝑡𝑤)𝑛 could be found 

from Eq. (4.84): 

 (𝜃𝑡𝑤)𝑛 =
(𝑀′)𝑛𝑟

𝐺𝐽
 (4.90) 

After finding new elastic twist, 𝑛 is incremented by 1. In order to stop the 

iterations, define a tolerance 𝜃𝑡𝑤,𝑒𝑟𝑟 such that iteration stops if the condition 

𝜃𝑡𝑤,𝑒𝑟𝑟 ≥ |(𝜃𝑡𝑤)𝑛 − (𝜃𝑡𝑤)𝑛−1| is satisfied. 

 Superposition of the Torsional Twist 

Solution procedure given in Section 4.12.2 is applicable for only a very specific 

case when there is a single load at a radial distance 𝑟. However, it is known that 

there is a loading field on the blade. In order to obtain twist field for the 

aerodynamic loading on the blade, superposition principle could be applied. In 

superposition method, if there exist several concentrated loads on a beam, these 

loads could be analyzed separately as if the beam was loaded by only one 

concentrated load. After finding the individual displacement fields due to the loads, 

displacement fields could be summed to find the resultant displacement field. 
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a) Actual Load  b)   First Load Case  c)   Second Load Case 

Figure 4.25. Superposition principle illustration. 

To find twist field for the actual load in Figure 4.25, twist field of first load case 

and second load case could be summed which are given as: 

 

𝜃𝑡𝑤,1 =

{
 

 
𝑇1𝑟

𝐺𝐽
𝑟 ≤ 𝑟1

𝑇1𝑟1
𝐺𝐽

𝑟 > 𝑟1

𝜃𝑡𝑤,2 =

{
 

 
𝑇2𝑟

𝐺𝐽
𝑟 ≤ 𝑟2

𝑇2𝑟2
𝐺𝐽

𝑟 > 𝑟2

 (4.91) 

If these two twist fields are collected, actual twist field could be found. 

 𝜃𝑡𝑤,𝑎𝑐𝑡 =

{
  
 

  
 

𝑇1𝑟

𝐺𝐽
+
𝑇2𝑟

𝐺𝐽
𝑟 ≤ 𝑟1

𝑇1𝑟1
𝐺𝐽

+
𝑇2𝑟

𝐺𝐽
𝑟2 ≥ 𝑟 > 𝑟1

𝑇1𝑟1
𝐺𝐽

+
𝑇2𝑟2
𝐺𝐽

𝑟 > 𝑟2

 (4.92) 

Same analogy could be used for the blade element analysis as well. 

 𝜃𝑡𝑤 =

{
 
 
 
 

 
 
 
 

𝑇1𝑟

𝐺𝐽
+
𝑇2𝑟

𝐺𝐽
+
𝑇3𝑟

𝐺𝐽
+ ⋯+

𝑇𝑛𝑟

𝐺𝐽
𝑟1 ≥ 𝑟

𝑇1𝑟1
𝐺𝐽

+
𝑇2𝑟

𝐺𝐽
+
𝑇3𝑟

𝐺𝐽
+ ⋯+

𝑇𝑛𝑟

𝐺𝐽
𝑟2 ≥ 𝑟 > 𝑟1

𝑇1𝑟1
𝐺𝐽

+
𝑇2𝑟2
𝐺𝐽

+
𝑇3𝑟

𝐺𝐽
+ ⋯+

𝑇𝑛𝑟

𝐺𝐽
𝑟3 ≥ 𝑟 > 𝑟2

𝑇1𝑟1
𝐺𝐽

+
𝑇2𝑟2
𝐺𝐽

+
𝑇3𝑟3
𝐺𝐽

+ ⋯+
𝑇𝑛𝑟

𝐺𝐽
𝑟𝑛 > 𝑟 ≥ 𝑟𝑛−1

 (4.93) 

𝑇1 
𝑇2 

𝑟1 

𝑟2 

𝑇1 

𝑟1 = 
𝑇2 

𝑟2 

+ 
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4.13 Harmonic Solution of the Flapping with Hinge Offset 

If Eq. (4.77) is expanded, it would be seen that lots of harmonic terms appear in the 

equation. These harmonics consist of not only the first harmonics sin𝜓 and cos𝜓 

but also combined harmonics such as sin𝜓 cos𝜓 and higher order harmonics such 

as sin2𝜓 and cos2𝜓. To solve Eq. (4.77) for steady-state condition, Johnson [12] 

suggests that operands given in Eq. (4.94) could be applied to both sides to obtain 

the mean and the first harmonics for blade pitch angle 𝜃 and flapping angle 𝛽. 

 
1

2𝜋
∫ (… )𝑑𝜓
2𝜋

0

,
1

𝜋
∫ (… ) 𝑐𝑜𝑠 𝜓𝑑𝜓
2𝜋

0

,
1

𝜋
∫ (… ) 𝑠𝑖𝑛𝜓 𝑑𝜓
2𝜋

0

 (4.94) 

Since closed form of the twist is not known, operands given in Eq. (4.94) should be 

expressed in a discrete form. From [19], discrete form of the operands could be 

written as: 

 
1

𝑁𝑎𝑧
∑ (…)

𝑛=𝑁𝑎𝑧

𝑛=1

 ,
2

𝑁𝑎𝑧
∑ (…)

𝑛=𝑁𝑎𝑧

𝑛=1

𝑐𝑜𝑠 𝜓𝑛  ,
2

𝑁𝑎𝑧
∑ (…)

𝑛=𝑁𝑎𝑧

𝑛=1

𝑠𝑖𝑛 𝜓𝑛 (4.95) 

where 𝜓𝑛 = 2𝜋
𝑛

𝑁𝑎𝑧
. If operands in Eq. (4.95) are applied to the left-hand side of 

Eq. (4.77), we obtain: 

 
1

𝑁𝑎𝑧
∑ (�̈�𝑛 + (𝜉𝛺)

2𝛽𝑛)

𝑛=𝑁𝑎𝑧

𝑛=1

= (𝜉𝛺)2𝛽0 (4.96) 

 
2

𝑁𝑎𝑧
∑ (�̈�𝑛 + (𝜉𝛺)

2𝛽𝑛)

𝑛=𝑁𝑎𝑧

𝑛=1

𝑐𝑜𝑠 𝜓𝑛 ≅ 𝛺
2(𝜉2 − 1)𝛽1𝑐 (4.97) 

 
2

𝑁𝑎𝑧
∑ (�̈�𝑛 + (𝜉𝛺)

2𝛽𝑛)

𝑛=𝑁𝑎𝑧

𝑛=1

𝑠𝑖𝑛 𝜓𝑛 ≅ 𝛺2(𝜉2 − 1)𝛽1𝑠 (4.98) 

For the right-hand side of Eq. (4.77), it is needed to change the integral order such 

that operand integral is taken firstly then the integral over the blade span is taken. 
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In the moment expression of Eq. (4.77), only the term 
1

√1−𝑀2
(𝑢𝑇

2𝜃 − 𝑢𝑇𝑢𝑃) is a 

function of 𝜓, other terms are constant w.r.t the azimuth angle 𝜓. Therefore, the 

operands given in Eq. (4.95) applied to the periodic term in Eq. (4.77). 

 

1

𝑁𝑎𝑧
∑

1

√1 −𝑀2
(𝑢𝑇

2𝜃 − 𝑢𝑇𝑢𝑃)

𝑛=𝑁𝑎𝑧

𝑛=1

≅ 𝜃0{(𝛺𝑟)
2𝐻0,0 + 2𝛺𝑟𝑉𝐻1,0 + 𝑉2𝐻2,0}

+ 𝜃1𝑠{(𝛺𝑟)
2𝐻1,0 + 2𝛺𝑟𝑉𝐻2,0 + 𝑉2𝐻3,0}

+ 𝛽1𝑐{𝛺
2𝑟𝜂𝐻1,0 − 𝛺𝑟𝑉𝜂′𝐻0,2 +𝛺𝑉𝜂𝐻2,0

− 𝑉2𝜂′𝐻1,2} − 𝜈{𝛺𝑟𝐻0,0 + 𝑉𝐻1,0}

+
1

𝑁𝑎𝑧
∑

1

√1 −𝑀𝑛
2
𝑢𝑇
2
𝑛
𝜃𝑡𝑤𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

 

(4.99) 

 

1

𝑁𝑎𝑧
∑

1

√1 −𝑀2
(𝑢𝑇

2𝜃 − 𝑢𝑇𝑢𝑃) 𝑐𝑜𝑠 𝜓𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

≅ 𝜃1𝑐{(𝛺𝑟)
2𝐻0,2 + 2𝛺𝑟𝑉𝐻1,2 + 𝑉2𝐻2,2}

− 𝛽0{𝛺𝑟𝑉𝜂
′𝐻0,2 + 𝑉2𝜂′𝐻1,2}

− 𝛽1𝑠{𝛺
2𝑟𝜂𝐻0,2 + 𝛺𝑟𝑉𝜂′𝐻1,2 + 𝛺𝑉𝜂𝐻1,2

+ 𝑉2𝜂′𝐻2,2} +
1

𝑁𝑎𝑧
∑

1

√1−𝑀𝑛
2
𝑢𝑇
2
𝑛
𝜃𝑡𝑤𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

𝑐𝑜𝑠 𝜓𝑛 

(4.100) 

 

1

𝑁𝑎𝑧
∑

1

√1 −𝑀2
(𝑢𝑇

2𝜃 − 𝑢𝑇𝑢𝑃) 𝑠𝑖𝑛 𝜓𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

≅ 𝜃0{(𝛺𝑟)
2𝐻1,0 + 2𝛺𝑟𝑉𝐻2,0 + 𝑉2𝐻3,0}

+ 𝜃1𝑠{(𝛺𝑟)
2𝐻2,0 + 2𝛺𝑟𝑉𝐻3,0 + 𝑉2𝐻4,0}

+ 𝛽1𝑐{𝛺
2𝑟𝜂𝐻2,0 − 𝛺𝑟𝑉𝜂′𝐻1,2 +𝛺𝑉𝜂𝐻3,0

− 𝑉2𝜂′𝐻2,2} − 𝜈{𝛺𝑟𝐻1,0 + 𝑉𝐻2,0}

+
1

𝑁𝑎𝑧
∑

1

√1 −𝑀𝑛
2
𝑢𝑇
2
𝑛
𝜃𝑡𝑤𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

𝑠𝑖𝑛 𝜓𝑛 

(4.101) 
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where Ha,b is harmonic solution parameter and given as: 

 𝐻𝑎,𝑏 =
1

𝑁𝑎𝑧
∑

𝑠𝑖𝑛𝑎 𝜓𝑛 𝑐𝑜𝑠
𝑏 𝜓𝑛

√1 −𝑀𝑛
2

𝑛=𝑁𝑎𝑧

𝑛=1

 (4.102) 

By combining Eq’s. from (4.96) to (4.101) respectively: 

 

(𝜉𝛺)2𝛽0 =
1

𝐼�̂�
∫

1

2
𝜌𝑐𝐶𝐿𝛼 (𝜃0{(𝛺𝑟)

2𝐻0,0 + 2𝛺𝑟𝑉𝐻1,0 + 𝑉2𝐻2,0}
𝑅

𝑒𝑅

+ 𝜃1𝑠{(𝛺𝑟)
2𝐻1,0 + 2𝛺𝑟𝑉𝐻2,0 + 𝑉2𝐻3,0}

+ 𝛽1𝑐{𝛺
2𝑟𝜂𝐻1,0 − 𝛺𝑟𝑉𝜂′𝐻0,2 + 𝛺𝑉𝜂𝐻2,0 − 𝑉2𝜂′𝐻1,2}

− 𝜈{𝛺𝑟𝐻0,0 + 𝑉𝐻1,0} +
1

𝑁𝑎𝑧
∑

1

√1−𝑀𝑛
2
𝑢𝑇
2
𝑛
𝜃𝑡𝑤𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

)𝜂𝑑𝑟 

(4.103) 

 

𝛺2(𝜉2 − 1)𝛽1𝑐 =
2

𝐼�̂�
∫

1

2
𝜌𝑐𝐶𝐿𝛼 (𝜃1𝑐{(𝛺𝑟)

2𝐻0,2
𝑅

𝑒𝑅

+ 2𝛺𝑟𝑉𝐻1,2 + 𝑉2𝐻2,2} − 𝛽0{𝛺𝑟𝑉𝜂
′𝐻0,2 + 𝑉2𝜂′𝐻1,2}

− 𝛽1𝑠{𝛺
2𝑟𝜂𝐻0,2 + 𝛺𝑟𝑉𝜂′𝐻1,2 + 𝛺𝑉𝜂𝐻1,2 + 𝑉2𝜂′𝐻2,2}

+
1

𝑁𝑎𝑧
∑

1

√1 −𝑀𝑛
2
𝑢𝑇
2
𝑛
𝜃𝑡𝑤𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

𝑐𝑜𝑠 𝜓𝑛)𝜂𝑑𝑟 

(4.104) 

 

𝛺2(𝜉2 − 1)𝛽1𝑠 =
2

𝐼�̂�
∫

1

2
𝜌𝑐𝐶𝐿𝛼 (𝜃0{(𝛺𝑟)

2𝐻1,0
𝑅

𝑒𝑅

+ 2𝛺𝑟𝑉𝐻2,0 + 𝑉2𝐻3,0} + 𝜃1𝑠{(𝛺𝑟)
2𝐻2,0 + 2𝛺𝑟𝑉𝐻3,0 + 𝑉2𝐻4,0}

+ 𝛽1𝑐{𝛺
2𝑟𝜂𝐻2,0 − 𝛺𝑟𝑉𝜂′𝐻1,2 + 𝛺𝑉𝜂𝐻3,0 − 𝑉2𝜂′𝐻2,2}

− 𝜈{𝛺𝑟𝐻1,0 + 𝑉𝐻2,0} +
1

𝑁𝑎𝑧
∑

1

√1 −𝑀𝑛
2
𝑢𝑇
2
𝑛
𝜃𝑡𝑤𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

𝑠𝑖𝑛𝜓𝑛)𝜂𝑑𝑟 

(4.105) 

Since closed form of 𝜃𝑡𝑤 could not be obtained, integrals and infinitesimal 

length 𝑑𝑟 appearing in Eq’s. (4.103), (4.104) and (4.105) should be replaced with a 

summation symbol and with a blade element length Δ𝑟. 
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Another critical point regarding Eq’s. (4.103), (4.104) and (4.105) is that the 

integral lower limit should be updated if 𝑟𝑅 > 𝑒 i.e., the aerodynamic root cutout is 

higher than flap hinge offset. In addition, upper limit of the integrals should be 

written as tip loss 𝐵𝑅 instead of blade tip. 

 

(𝜉𝛺)2𝛽0 =
1

𝐼�̂�
∑

1

2
𝜌𝑐𝐶𝐿𝛼 (𝜃0{(𝛺𝑟𝑚)

2𝐻𝑚
0,0 + 2𝛺𝑟𝑚𝑉𝐻𝑚

1,0

𝑁𝑏𝑒𝑚

𝑚=1

+ 𝑉2𝐻𝑚
2,0} + 𝜃1𝑠{(𝛺𝑟𝑚)

2𝐻𝑚
1,0 + 2𝛺𝑟𝑚𝑉𝐻𝑚

2,0 + 𝑉2𝐻𝑚
3,0}

+ 𝛽1𝑐{𝛺
2𝑟𝑚𝜂𝑚𝐻𝑚

1,0 − 𝛺𝑟𝑚𝑉𝜂𝑚
′ 𝐻𝑚

0,2 + 𝛺𝑉𝜂𝑚𝐻𝑚
2,0 − 𝑉2𝜂𝑚

′ 𝐻𝑚
1,2}

− 𝜈{𝛺𝑟𝑚𝐻𝑚
0,0 + 𝑉𝐻𝑚

1,0}

+
1

𝑁𝑎𝑧
∑

1

√1 −𝑀𝑚,𝑛
2

𝑢𝑇
2
𝑚,𝑛
𝜃𝑡𝑤𝑚,𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

)𝜂𝑚𝛥𝑟 

(4.106) 

 

𝛺2(𝜉2 − 1)𝛽1𝑐 =
2

𝐼�̂�
∑

1

2
𝜌𝑐𝐶𝐿𝛼 (𝜃1𝑐{(𝛺𝑟𝑚)

2𝐻𝑚
0,2

𝑁𝑏𝑒𝑚

𝑚=1

+ 2𝛺𝑟𝑚𝑉𝐻𝑚
1,2 + 𝑉2𝐻𝑚

2,2} − 𝛽0{𝛺𝑟𝑚𝑉𝜂𝑚
′ 𝐻𝑚

0,2 + 𝑉2𝜂𝑚
′ 𝐻𝑚

1,2}

− 𝛽1𝑠{𝛺
2𝑟𝑚𝜂𝑚𝐻𝑚

0,2 + 𝛺𝑟𝑚𝑉𝜂𝑚
′ 𝐻𝑚

1,2 + 𝛺𝑉𝜂𝑚𝐻𝑚
1,2 + 𝑉2𝜂𝑚

′ 𝐻𝑚
2,2}

+
1

𝑁𝑎𝑧
∑

1

√1 −𝑀𝑚,𝑛
2

𝑢𝑇
2
𝑚,𝑛
𝜃𝑡𝑤𝑚,𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

𝑐𝑜𝑠 𝜓𝑛)𝜂𝑚𝛥𝑟 

(4.107) 

 

𝛺2(𝜉2 − 1)𝛽1𝑠 =
2

𝐼�̂�
∑

1

2
𝜌𝑐𝐶𝐿𝛼 (𝜃0{(𝛺𝑟)

2𝐻𝑚
1,0 + 2𝛺𝑟𝑉𝐻𝑚

2,0

𝑁𝑏𝑒𝑚

𝑚=1

+ 𝑉2𝐻𝑚
3,0} + 𝜃1𝑠{(𝛺𝑟)

2𝐻𝑚
2,0 + 2𝛺𝑟𝑉𝐻𝑚

3,0 + 𝑉2𝐻𝑚
4,0}

+ 𝛽1𝑐{𝛺
2𝑟𝜂𝐻𝑚

2,0 − 𝛺𝑟𝑉𝜂′𝐻𝑚
1,2 + 𝛺𝑉𝜂𝐻𝑚

3,0 − 𝑉2𝜂′𝐻𝑚
2,2}

− 𝜈{𝛺𝑟𝐻𝑚
1,0 + 𝑉𝐻𝑚

2,0}

+
1

𝑁𝑎𝑧
∑

1

√1 −𝑀𝑚,𝑛
2

𝑢𝑇
2
𝑚,𝑛
𝜃𝑡𝑤𝑚,𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

𝑠𝑖𝑛 𝜓𝑛)𝜂𝑚𝛥𝑟 

(4.108) 

where the summations are calculated for the blade elements between the 

aerodynamic root cutout and tip loss. 
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For a given set of 𝜃𝑐𝑜𝑛 flapping of the main rotor 𝛽 could be found by using final 

flapping Eq’s. (4.106), (4.107) and (4.108) or vice versa. For the trim analyses, 𝛽 is 

found by using the force and moment equilibrium equations which is discussed in 

Section 4.14.2. By implementing obtained 𝛽 harmonics, control inputs 𝜃𝑐𝑜𝑛 could 

be calculated by using Eq’s. from (4.106) to (4.108). 

Another point regarding the flapping equations is that as it could be seen from the 

equations, flapping harmonics are coupled with each other since blade aerodynamic 

forces depend on the perpendicular speed coming from the flap motion. Therefore, 

an iterative solution procedure is needed to solve the flapping harmonics. 

Now let us re-write rotor hub moment. There are three components of the rotor hub 

moment: 

• Aerodynamic force: 𝐹𝑧 in the normal direction of the blade. Moment arm of 

this force about the hub is 𝑟. 

• Centrifugal force: 𝑚𝛺2𝑟𝑑𝑟 in the direction of radially outward. Moment 

arm of this force about the hub is 𝑧 = 𝜂𝛽. 

• Inertial force: 𝑚�̈�𝑑𝑟 = 𝑚𝜂�̈�𝑑𝑟 in the opposite direction of the flap motion. 

Moment arm of this force about the root is 𝑟. 

Therefore, rotor hub moment produced by one blade could be written as: 

 𝑀𝐻 = −(�̈� + Ω2𝛽)∫ 𝑚𝜂𝑟𝑑𝑟
𝑅

𝑒𝑅

+∫ 𝐹𝑧𝑟𝑑𝑟
𝐵𝑅

𝑟𝑅

 (4.109) 
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From the relation given in Eq. (4.70), Eq. (4.109) could be re-written: 

 

𝑀𝐻 = −(
1

𝐼�̂�
∫ 𝐹𝑧𝜂𝑑𝑟
𝐵𝑅

𝑟𝑅

− (𝜉𝛺)2𝛽 + 𝛺2𝛽)∫ 𝑚𝜂𝑟𝑑𝑟
𝑅

𝑒𝑅

+∫ 𝐹𝑧𝑟𝑑𝑟
𝐵𝑅

𝑟𝑅

= 𝛺2(𝜉2 − 1)𝛽∫ 𝑚𝜂𝑟𝑑𝑟
𝑅

𝑒𝑅

−
1

𝐼�̂�
∫ 𝐹𝑧𝜂𝑑𝑟
𝐵𝑅

𝑟𝑅

∫ 𝑚𝜂𝑟𝑑𝑟
𝑅

𝑒𝑅

+∫ 𝐹𝑧𝑟𝑑𝑟
𝐵𝑅

𝑟𝑅

= 𝛺2(𝜉2 − 1)𝛽𝐼�̂� −
𝐼�̂�

𝐼�̂�
∫ 𝐹𝑧𝜂𝑑𝑟
𝐵𝑅

𝑟𝑅

+∫ 𝐹𝑧𝑟𝑑𝑟
𝐵𝑅

𝑟𝑅

= 𝛺2(𝜉2 − 1)𝛽𝐼�̂� +∫ 𝐹𝑧 (𝑟 −
𝐼�̂�

𝐼�̂�
𝜂) 𝑑𝑟

𝐵𝑅

𝑟𝑅

 

(4.110) 

where 𝐼�̂� is given as ∫ 𝜂2𝑚𝑑𝑟
𝑅

𝑒𝑅
 in Section 4.11.1 and 𝐼�̂� is main rotor blade second-

order inertia and defined as ∫ 𝑚𝜂𝑟𝑑𝑟
𝑅

𝑒𝑅
. 

To find steady-state solution of the main rotor hub, second and third operands 

given in Eq. (4.95) should be used. 

 

𝑀𝑌 = −𝑁𝑏
2

𝑁𝑎𝑧
∑ 𝑀𝐻

𝑛=𝑁𝑎𝑧

𝑛=1

𝑐𝑜𝑠 𝜓𝑛

= −𝑁𝑏𝛺
2(𝜉2 − 1)𝛽1𝑐𝐼�̂�

+ 𝑁𝑏
2

𝑁𝑎𝑧
∫ ( ∑ 𝐹𝑧,𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

𝑐𝑜𝑠 𝜓𝑛)
𝐵𝑅

𝑟𝑅

(
𝐼�̂�

𝐼�̂�
𝜂 − 𝑟)𝑑𝑟 

(4.111) 

 

𝑀𝑋 = 𝑁𝑏
2

𝑁𝑎𝑧
∑ 𝑀𝐻

𝑛=𝑁𝑎𝑧

𝑛=1

𝑠𝑖𝑛𝜓𝑛

= 𝑁𝑏𝛺
2(𝜉2 − 1)𝛽1𝑠𝐼�̂�

+ 𝑁𝑏
2

𝑁𝑎𝑧
∫ ( ∑ 𝐹𝑧,𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

𝑠𝑖𝑛𝜓𝑛)
𝐵𝑅

𝑟𝑅

(𝑟 −
𝐼�̂�

𝐼�̂�
𝜂)𝑑𝑟 

(4.112) 
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Integrals given in Eq’s. (4.111) and (4.112) could be replaced by summation 

symbols such that: 

 

𝑀𝑌 = −𝑁𝑏Ω
2(𝜉2 − 1)𝛽1𝑐𝐼�̂�

+ 𝑁𝑏
2

𝑁𝑎𝑧
(∑ { ∑ 𝐹𝑧𝑚,𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

c𝑜𝑠 𝜓𝑛}

𝑚

(
𝐼�̂�

𝐼�̂�
𝜂𝑚 − 𝑟𝑚)Δ𝑟

𝑁𝑏𝑒𝑚

𝑚=1

) 
(4.113) 

 

𝑀𝑋 = 𝑁𝑏Ω
2(𝜉2 − 1)𝛽1𝑠𝐼�̂�

+ 𝑁𝑏
2

𝑁𝑎𝑧
(∑ { ∑ 𝐹𝑧𝑚,𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

𝑠𝑖𝑛𝜓𝑛}

𝑚

(𝑟𝑚 −
𝐼�̂�

𝐼�̂�
𝜂𝑚)Δ𝑟

𝑁𝑏𝑒𝑚

𝑚=1

) 
(4.114) 

Note that blade element summations are done for the elements between the 

aerodynamic root cutout and tip loss. 

4.14 Force and Moment Equilibrium in Forward Flight 

In this section, force, and moment equilibrium of the aircraft in forward flight will 

be discussed in detail. The flight condition where all forces and moments are in 

equilibrium is called as trim or trim points. Trim points are one of the key 

parameters in helicopter flight analyses power calculations for the helicopters are 

done according to the trim points. 

 Force Equilibrium 

Force equilibrium calculations are done w.r.t the two sets of forces. First one is 

longitudinal forces which consist of rotor longitudinal force 𝐻, fuselage 

aerodynamic drag 𝐷. Second set of forces is defined by fuselage side force 𝑌𝐹 , 

rotor lateral force 𝑌. Latter set of forces is called as lateral forces. Rotor thrust 𝑇 

and the weight of the aircraft 𝑊 contribute both longitudinal and lateral forces. 
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a) Longitudinal forces    b)   Lateral force (aft view) 

Figure 4.26. Forces on the main rotor in forward flight. [12] 

𝜃𝐹𝑃 is called flight path angle which is the angle between the speed of the aircraft 

and the horizontal plane. If the helicopter flies in the horizontal plane; in other 

words, does not change its altitude, 𝜃𝐹𝑃  is zero. 𝑖 is called as tilt angle or angle of 

attack of the rotor. 𝑖 is defined between the speed of the aircraft and reference 

plane. Φ is the roll angle of the reference plane. Φ is also called as lateral tilt. 

By using Figure 4.26, longitudinal force equilibrium could be written for both in 

vertical and horizontal axis, respectively. 

 𝑊 = 𝑇 𝑐𝑜𝑠(𝑖 − 𝜃𝐹𝑃) − 𝐷 𝑠𝑖𝑛 𝜃𝐹𝑃 +  𝐻 𝑠𝑖𝑛(𝑖 − 𝜃𝐹𝑃) (4.115) 

 𝐷 𝑐𝑜𝑠 𝜃𝐹𝑃 + 𝐻 𝑐𝑜𝑠(𝑖 − 𝜃𝐹𝑃) = 𝑇 𝑠𝑖𝑛(𝑖 − 𝜃𝐹𝑃) (4.116) 

For small angles and flight in horizontal plane, Eq’s. (4.115) and (4.116) could be 

written as: 

 𝑊 = 𝑇 (4.117) 

 𝐷 + 𝐻 = 𝑇𝑖 (4.118) 

In Eq. (4.63), 𝐻 is given as 𝐻𝑇𝑃𝑃 − 𝛽1𝑐𝑇 for small angle 𝛽1𝑐. Therefore, Eq. 

(4.118) becomes: 

 𝐷 + 𝐻𝑇𝑃𝑃 − 𝛽1𝑐𝑇 = 𝑇𝑖 (4.119) 
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From Eq. (4.119) incidence of the reference plane could be found as: 

 𝑖 =
𝐷

𝑇
+
𝐻𝑇𝑃𝑃
𝑇

− 𝛽1𝑐 (4.120) 

For the lateral force equilibrium: 

 𝑌𝐹 + 𝑌 𝑐𝑜𝑠 𝛷 + 𝑇 𝑠𝑖𝑛 𝛷 = 0 (4.121) 

 𝑊 = 𝑇 𝑐𝑜𝑠 𝛷 − 𝑌 𝑠𝑖𝑛𝛷 (4.122) 

From Eq’s. (4.121) and (4.122), roll angle of the rotor disk could be found as by 

implementing Eq. (4.64): 

 𝛷 = −
𝑌𝐹
𝑊
−
𝑌𝑇𝑃𝑃
𝑇

+ 𝛽1𝑠 (4.123) 

 Moment Equilibrium 

Rotor hub moments could be divided into two sub-sets as forces are divided. First 

moment set is called as pitch moments. 𝑀𝑌 is rotor hub pitch moment, 𝑀𝑌𝐹 is 

fuselage aerodynamic pitching moment, ℎ is the vertical distance between the rotor 

hub and center of gravity of the aircraft in body-fixed frame, 𝑖𝑠 is the longitudinal 

tilt of the rotor shaft and is equal to (𝑖 − 𝜃𝐹𝑃), 𝑋𝐶𝐺 is the horizontal distance 

between the rotor hub and center of gravity of the aircraft in the x-axis of body-

fixed frame. Second set is rolling moments. 𝑀𝑋 is the rotor hub rolling moment, 

𝑀𝑋𝐹 is the fuselage aerodynamic moment in rolling direction, 𝑌𝐹 is the fuselage 

aerodynamic side force, Φs is the shaft roll angle which is equal to the Φ, 𝑌𝐶𝐺 is the 

horizontal distance between the rotor hub and center of gravity of the aircraft in the 

y-axis of body-fixed frame. 
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a) Pitch moments    b)   Roll moments 

Figure 4.27. Moments on the main rotor in forward flight. [12] 

From Figure 4.27, moment equilibrium w.r.t rotor hub could be written for pitch 

moments assuming small angles: 

 𝑀𝑌 +𝑀𝑌𝐹 +𝑊(ℎ𝑖𝑠 − 𝑋𝐶𝐺) − ℎ𝐷 = 0 (4.124) 

From Eq. (4.124) 𝑖𝑠 could be solved: 

 𝑖𝑠 = 𝑖 − 𝜃𝐹𝑃 =
𝑋𝐶𝐺
ℎ
+
𝐷

𝑊
−
𝑀𝑌𝐹

𝑊ℎ
−
𝑀𝑌

𝑊ℎ
 (4.125) 

Note that for the flights in the horizontal plane 𝜃𝐹𝑃 is zero which results 𝑖𝑠 = 𝑖. 

Roll moment equilibrium is written by making small angle assumption: 

 𝑀𝑋 +𝑀𝑋𝐹 +𝑊(ℎ𝛷𝑠 − 𝑌𝐶𝐺) + ℎ𝑌𝐹 = 0 (4.126) 

Φs could be written as from Eq. (4.126): 

 𝛷𝑠 = 𝛷 =
𝑌𝐶𝐺
ℎ
−
𝑌𝐹
𝑊
−
𝑀𝑋𝐹
𝑊ℎ

−
𝑀𝑋
𝑊ℎ

 (4.127) 
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By combining Eq. (4.120) with Eq. (4.125) and Eq. (4.123) with Eq. (4.127), 𝛽1𝑐 

and 𝛽1𝑠 for the trimmed flight could be written as: 

 𝛽1𝑐 =
𝐷

𝑇
+
𝐻𝑇𝑃𝑃
𝑇

− (
𝑋𝐶𝐺
ℎ
+
𝐷

𝑊
−
𝑀𝑌𝐹

𝑊ℎ
−
𝑀𝑌

𝑊ℎ
) (4.128) 

 𝛽1𝑠 =
𝑌𝐹
𝑊
+
𝑌𝑇𝑃𝑃
𝑇

+ (
𝑌𝐶𝐺
ℎ
−
𝑌𝐹
𝑊
−
𝑀𝑋𝐹
𝑊ℎ

−
𝑀𝑋
𝑊ℎ

) (4.129) 

If Eq’s. (4.113) and (4.114) are put into Eq’s. (4.128) and (4.129) respectively, 

flapping harmonics in trim flight is found as: 

 𝛽1𝑐 =

𝐷
𝑇 +

𝐻𝑇𝑃𝑃
𝑇 −

𝑋𝐶𝐺
ℎ
−
𝐷
𝑊 +

𝑀𝑌𝐹

𝑊ℎ
+
𝑀𝑌𝑌

𝑊ℎ

1 +
𝑁𝑏𝛺2(𝜉2 − 1)𝐼�̂�

𝑊ℎ

 (4.130) 

 𝛽1𝑠 =

𝑌𝐹
𝑊 +

𝑌𝑇𝑃𝑃
𝑇 +

𝑌𝐶𝐺
ℎ
−
𝑌𝐹
𝑊 −

𝑀𝑋𝐹
𝑊ℎ

−
𝑀𝑋𝑋
𝑊ℎ

1 +
𝑁𝑏𝛺2(𝜉2 − 1)𝐼�̂�

𝑊ℎ

 (4.131) 

where, 𝑀𝑌𝑌 and 𝑀𝑋𝑋 are longitudinal and lateral component of the rotor hub 

pitching and rolling moment respectively. 𝑀𝑌𝑌 and 𝑀𝑋𝑋 are given as: 

 

𝑀𝑌𝑌 = 𝑁𝑏
2

𝑁𝑎𝑧
(∑ { ∑ 𝐹𝑧𝑚,𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

𝑐𝑜𝑠 𝜓𝑛}

𝑚

(
𝐼�̂�

𝐼�̂�
𝜂𝑚 − 𝑟𝑚)𝛥𝑟

𝑁𝑏𝑒𝑚

𝑚=1

)

𝑀𝑋𝑋 = 𝑁𝑏
2

𝑁𝑎𝑧
(∑ { ∑ 𝐹𝑧𝑚,𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

𝑠𝑖𝑛𝜓𝑛}

𝑚

(𝑟𝑚 −
𝐼�̂�

𝐼�̂�
𝜂𝑚)𝛥𝑟

𝑁𝑏𝑒𝑚

𝑚=1

)

 (4.132) 
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4.15 Performance in Forward Flight 

The term performance is used for calculation of the required power and comparing 

the required power with the power available. Performance calculations are usually 

done for over a range of forward flight speed. In this section, details of the power 

calculations for the forward flight will be discussed. 

Power required for the main rotor in a flight could be described as sum of the four 

parts. First one is called as induced power. Induced power describes the power 

needed to lift the aircraft. Induced power is directly related to thrust and induced 

flow. Second one is the profile power which describes the power needed to turn 

the blades in air. As it could be understood from the description, profile power is 

calculated by the rotor torque which is mainly determined by the aerodynamic drag 

forces acting on the blade. Third part is called as parasite power. Parasite power is 

the power needed to move the aircraft in air medium and it is related to the 

helicopter’s forward flight speed and aerodynamic drag force of the fuselage. Last 

one is the climb power. As its name suggests, climb power is the power needed to 

change the aircraft’s altitude. Induced power, profile power, parasite power and 

climb power relations are given respectively as: 

 𝑃𝑖 = 𝑇𝜈𝑖, 𝑃𝑜 = 𝛺𝑄, 𝑃𝑝 = 𝐷𝑉, 𝑃𝑐 = 𝑇𝑉𝑐 (4.133) 
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Figure 4.28. Typical required power graph for helicopters in trimmed forward 

flight. 

In Figure 4.28, it is seen that required power decreases as the forward flight speed 

increases up to some point, then required power starts to increase. There are two 

main reasons of this decrease in the required power. First one is that as the forward 

flight speed increases, inflow decreases as discussed in Section 4.2. A decrease in 

inflow results a decrease in induced power for constant thrust as well. Second one 

is that as the inflow angle 𝜙 decreases with forward flight speed, sectional lift 

contribution to the horizontal force decreases which dampens the required profile 

power since horizontal force of the blade depends on not only drag force but also 

sectional lift force as given in Eq. (4.26). Although parasite power increases with 

the forward flight speed, decrease in the induced and profile power dominates the 

overall performance up to a certain level. After some point, parasite power starts to 

dominate the performance; hence, the required power increases.  
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4.16 Trimmed Forward Flight Analysis 

As it is discussed in the very beginning of Section 0, performance calculations of a 

helicopter are conducted in trim points. Therefore, trim analysis must be done 

carefully to obtain trim points adequately. In this section, details of the trim 

analysis of the reference helicopter and effects of the torsional twist experienced by 

the blade to the trim points and performance characteristics will be discussed. 

 Trim Analysis 

In the very end of Section 0, a closed form of the flapping harmonics is given. 

Therefore, necessary flapping harmonics for a forward flight could be found by 

using Eq’s. (4.128) and (4.129). By putting the necessary flapping harmonics into 

Eq’s. (4.106), (4.107) and (4.108), coning angle 𝛽0 and harmonic inputs 𝜃1𝑐 and 

𝜃1𝑠 could be solved. However, a closed form solution of collective input 𝜃0 is not 

given yet. In Eq. (4.40), thrust is given as: 

 𝑇 = 𝑁𝑏 ∑ (𝐹𝑧)𝑚

𝑁𝑏𝑒𝑚

𝑚=1

 (4.134) 

where the summation starts from the aerodynamic root cutout and ends at where 

the tip loss effect starts. In an explicit form, Eq. (4.134) could be written as: 

 𝑇 = 𝑁𝑏 ∑
1

2
𝜌𝑐

𝑐𝑙𝛼

√1 −𝑀𝑚
2  
(𝑢𝑇

2
𝑚
𝜃𝑚 − 𝑢𝑇𝑚𝑢𝑃𝑚)

𝑁𝑏𝑒𝑚

𝑚=1

 (4.135) 

If right hand side of Eq. (4.135) is written explicitly there will be lots of higher 

order harmonic terms. On the other hand, thrust 𝑇 is independent of any harmonics. 

To obtain a steady-state solution, first operand given in Eq. (4.95) could be used. If 

the operand applied to the right-hand side of Eq. (4.135) a similar expression will 

be obtained given in Eq. (4.106): 
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𝑇 = 𝑁𝑏 ∑
1

2
𝜌𝑐𝐶𝐿𝛼 (𝜃0{(𝛺𝑟𝑚)

2𝐻𝑚
0,0 + 2𝛺𝑟𝑚𝑉𝐻𝑚

1,0 + 𝑉2𝐻𝑚
2,0}

𝑁𝑏𝑒𝑚

𝑚=1

+ 𝜃1𝑠{(𝛺𝑟𝑚)
2𝐻𝑚

1,0 + 2𝛺𝑟𝑚𝑉𝐻𝑚
2,0 + 𝑉2𝐻𝑚

3,0}

+ 𝛽1𝑐{𝛺
2𝑟𝑚𝜂𝑚𝐻𝑚

1,0 − 𝛺𝑟𝑚𝑉𝜂𝑚
′ 𝐻𝑚

0,2 + 𝛺𝑉𝜂𝑚𝐻𝑚
2,0

− 𝑉2𝜂𝑚
′ 𝐻𝑚

1,2} − 𝜈{𝛺𝑟𝑚𝐻𝑚
0,0 + 𝑉𝐻𝑚

1,0}

+
1

𝑁𝑎𝑧
∑

1

√1 −𝑀𝑚,𝑛
2

𝑢𝑇
2
𝑚,𝑛
𝜃𝑡𝑤𝑚,𝑛

𝑛=𝑁𝑎𝑧

𝑛=1

)𝛥𝑟 

(4.136) 

In trim analysis, thrust 𝑇 is equated to the aircraft’s weight 𝑊 in the first iteration 

step. Therefore, from Eq. (4.136), collective input 𝜃0 could be solved. However, as 

it could be seen that there are 𝜃1𝑠 and 𝜃𝑡𝑤 terms in Eq. (4.136). If torsional twist 

𝜃𝑡𝑤 expression given in Section 4.12.3 and Eq. (4.105) which gives longitudinal 

cyclic input 𝜃1𝑠 are inspected in detail, it is seen that the control inputs, torsional 

twist, flapping harmonics, rotor forces are all coupled. Therefore, an iterative 

solution is needed to be implemented. In Figure 4.29, iterative solution procedure 

for trim analysis is given as a flowchart then trim analysis solution procedure is 

explained step-by-step in detail. 
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Figure 4.29. Trim iterations flowchart. 

No 

𝜃𝐹𝑃 and 𝑉 are defined. 

Set 𝜃1𝑐
0 , 𝜃1𝑠

0 , 𝛽0
0, 𝛽1𝑐

0 , 𝛽1𝑠
0 , 𝜃𝑡𝑤

0 , 𝐷0, 𝑀𝑌𝐹
0 , 𝑖0 and Φ0 as 0.   

𝑇0 = 𝑊

𝜃𝑡𝑤
𝑛 , 𝜈𝑛, 𝑇𝑛, 𝐻𝑛, 𝑌𝑛 

|𝜈𝑛 − 𝜈𝑛−1| ≤ 𝜈𝑒𝑟𝑟 

|𝜃𝑡𝑤
𝑛 − 𝜃𝑡𝑤

𝑛−1| ≤ 𝜃𝑡𝑤𝑒𝑟𝑟 

|𝜃0
𝑛 − 𝜃0

𝑛−1| ≤ 𝜃0𝑒𝑟𝑟 & 

|𝜃1𝑐
𝑛 − 𝜃1𝑐

𝑛−1| ≤ 𝜃1𝑐𝑒𝑟𝑟 & 

|𝜃1𝑠
𝑛 − 𝜃1𝑠

𝑛−1| ≤ 𝜃1𝑠𝑒𝑟𝑟 & 

|𝛽0
𝑛 − 𝛽0

𝑛−1| ≤ 𝛽0𝑒𝑟𝑟 & 

|𝛽1𝑐
𝑛 − 𝛽1𝑐

𝑛−1| ≤ 𝛽1𝑐𝑒𝑟𝑟 & 

|𝛽1𝑠
𝑛 − 𝛽1𝑠

𝑛−1| ≤ 𝛽1𝑠𝑒𝑟𝑟 

Trim iterations stop. 

 
𝛽1𝑐
𝑛 , 𝑖𝑛 𝐷𝑛, 𝑀𝑌𝐹

𝑛  

𝛽1𝑠
𝑛 , Φ𝑛 

𝜃0
𝑛 

𝜃1𝑐
𝑛 , 𝜃1𝑠

𝑛  

No 

No 
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Steps of the trim iterations given in Figure 4.29: 

1. Define a flight path angle 𝜃𝐹𝑃 and a forward flight velocity of the helicopter 𝑉. 

2. Assume that cyclic inputs 𝜃1𝑐, 𝜃1𝑠, flapping angles 𝛽0, 𝛽1𝑐, 𝛽1𝑠, torsional twist 

field of the blade 𝜃𝑡𝑤, fuselage aerodynamic loads 𝐷, 𝑀𝑌𝐹, pitching and rolling 

angles 𝑖 and Φ are all zero for the first step of the iterations. 

3. From Eq. (4.136) calculate the collective input 𝜃0 by assuming 𝜈 = √𝑊/2𝜌𝐴  

from Eq. (4.1) and 𝑇 = 𝑊. 

4. Set the azimuth angle as 0°. 

5. Calculate tangential and perpendicular velocities of the blade section from 

Eq’s. (4.41) and (4.54) respectively then obtain inflow angle 𝜙. 

6. Calculate aerodynamic lift and drag forces of the blade elements and obtain 

torsional twist for each blade element. 

7. Increment the azimuth angle and repeat the steps from 5 to 9 for all azimuth 

angles. 

8. After completing one revolution, calculate the rotor forces 𝑇, 𝐻, 𝑌 and uniform 

inflow from Eq’s. (4.40), (4.57), (4.58) and (4.1) respectively. 

9. Go to the step-4 and continue the iterations until inflow and twist of the blade is 

converged. 

10. Calculate the new collective input from the relation given in Eq. (4.136). 

11. From the relation in Eq’s. (4.125) and (4.127), calculate pitching and rolling 

angle of the aircraft respectively. After finding pitching angle of the aircraft, 

fuselage aerodynamic drag force and pitching moment are calculated. 

12. Since all the aerodynamic loads are calculated, necessary flapping harmonics 

𝛽1𝑐 and 𝛽1𝑠 could be found from Eq’s. (4.128) and (4.129). 

13. From the harmonic solutions given in Eq’s. (4.106), (4.107) and (4.108), coning 

angle 𝛽0 and necessary cyclic inputs 𝜃1𝑐 and 𝜃1𝑠 could be solved for the flight 

condition defined in step-1. 

14. Return to step-4 and continue the iterations until control input 𝜃 and flapping 

angle 𝛽 are converged. 
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4.17 Results of the Trim Analysis 

 Elastic Twist in Trim 

 

Figure 4.30. Elastic twist field on the rotor for different forward flight speeds. 

Figure 4.30 illustrates the elastic twist field of the blade. In Figure 4.30, it is seen 

that elastic twist field is axially symmetric in both lateral and longitudinal direction 

in hover flight since aerodynamic loads are axially symmetric in hover condition. 

However, as the forward flight speed increases elastic twist field becomes 

unsymmetrical in both fore-aft and left-right direction. The main reason behind this 

situation is that as the forward flight speed increases helicopter gets both a pitching 

and a rolling angle. Therefore, thrust vector tilts both in longitudinal and lateral 
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axes which decreases the vertical component of the thrust vector; however, main 

purpose of the thrust vector is balancing the weight. To balance the weight of the 

helicopter, inputs are given such that thrust of the rotor would balance the weight. 

As a result, an unsymmetrical load distribution occurs which creates an 

unsymmetrical twist field.  

Another important result observed from Figure 4.30 is that the elastic twist is in the 

order of 0.05 degrees. Although the magnitude of the elastic twist could be 

considered as very small, to be able to make any comment about the magnitude and 

the effects of the twist, collective and cyclic inputs should be inspected as well. 

 Collective Input in Trim 

 

Figure 4.31. Collective input in forward flight. 

As it could be seen from Figure 4.31, collective input 𝜃0 is in the order of 4 to 6 

degrees. If the twist is compared with the collective input, the effect of the twist is 

observed very small. The collective input difference between the rigid and elastic 
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blade is about 0.05 degrees. Therefore, it could be stated that the effect of the 

elastic twist is negligible in terms of collective input.  

A typical characteristic of the collective input in trimmed forward flight obtained in 

Figure 4.31 which is the decreasing trend in collective input as the forward flight 

speed increases. The main reason behind this phenomenon is that as the inflow 

decreases with forward flight up to some forward flight speed, negative effect of 

the inflow on the angle of attack decreases as well. Hence, necessary collective 

input to produce same thrust decreases. 

 Cyclic Inputs in Trim 

Now let us examine the effect of the torsional twist to the cyclic inputs 𝜃1𝑐 and 𝜃1𝑠. 

 

Figure 4.32. Longitudinal and lateral cyclic input in forward flight. 
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To balance the lift distribution between the advancing and retreating side, 

longitudinal cyclic is given negative. So that the lift balance is obtained by 

increasing the angle of attack in the retreating side where the dynamic pressure is 

lower than the advancing side and decreasing the angle of attack in the advancing 

side. 

As the forward flight speed increases, fuselage aerodynamic drag force increases as 

well. To overcome fuselage aerodynamic drag force, 𝜃1𝑐 increases as the forward 

flight speed increases as it could be seen from Figure 4.32.  

Figure 4.32 also shows that the cyclic inputs for elastic and rigid blade are almost 

identical. Therefore, it could be stated that rigid blade assumption is valid for the 

reference blade and reference helicopter in terms of control inputs. 

 Required Power in Trim 

 

Figure 4.33. Required power in trimmed forward flight. 
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Another important performance outcome of the trimmed forward flight is the 

required power curve. In Figure 4.33, it is observed that required power decreases 

about %55 w.r.t hover as forward flight speed increases. As it is discussed in 

Section 0, during the decreasing phase of the required power, dominating power 

terms are induced and profile powers. Since the induced power is related with 

thrust and torsional twist is very low, the difference between induced and profile 

power terms are almost zero for rigid and elastic blade in Figure 4.33.  

 Incidence (Pitch) and Roll Angle in Trim 

 

Figure 4.34. Forward flight incidence (pitch) and rolling angle of the helicopter. 
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In Figure 4.34, it is observed that incidence angle increases as the forward flight 

speed increases which is an expected result from a general sense. It is also observed 

that incidence angle increases up to 2 degrees. Although 2 degrees could be 

considered as small tilt, maximum incidence angle of the reference helicopter in 

maximum forward flight could be stated as considerably high compared to the rotor 

longitudinal flapping angle shown in Figure 4.36. If the rotor design of the 

reference helicopter is chosen as articulated rather than hingeless, it could be 

expected that this big difference between rotor longitudinal angle and helicopter tilt 

angle would be smaller since rotor hub moment will decrease and required rotor 

thrust tilt could be achieved by longitudinal flapping instead of tilting whole 

helicopter. 

It is also observed that roll angle increases with the forward flight speed. However, 

it might not be easy to expect any roll angle during forward flight. Although the 

magnitude of the rolling angle is small, roll angle occurs due to the rotor hub 

moment 𝑀𝑋 which occurs with asymmetrical lift distribution of the rotor in 

forward flight. It is also observed that there is a slight difference in the rolling 

angle between elastic and rigid blade. The main reason behind this is that 

magnitude of the rolling angle is in the order of elastic twist of the blades which 

makes the difference between elastic and rigid blade results could be seen clearly.  
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 Main Rotor Forces and Moments in Trim 

 

Figure 4.35. Rotor force and moment components in forward flight. 

As a general sense, main expectation is that as the forward flight speed increases 

rotor longitudinal force increases as well; however, it is seen that rotor longitudinal 

force decreases up to some forward flight speed then starts to increase. In Eq. 

(4.63), rotor longitudinal force 𝐻 consists of two parts. First one is the TPP 

component of the force which increases as the forward flight speed. Second one is 

the −𝑇𝛽1𝑐 term. For the low forward flight speeds, −𝑇𝛽1𝑐 dominates the rotor 

longitudinal force negatively; therefore, rotor 𝐻 force decreases up to some 

forward flight speeds then it starts to increase.  

If rotor lateral force is inspected from Figure 4.35, it is observed that rotor lateral 

force increases as the forward flight speed increases. Although it could be expected 
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that magnitude of the rotor lateral force 𝑌 would increase, making a comment 

about the sign of the rotor lateral force 𝑌 at the first sight may be hard since it 

depends on both flapping angles and cyclic inputs. However, if Eq. (4.64) is 

considered, it could be expected that rotor lateral force 𝑌 will increase in the 

negative direction since thrust is much greater than the 𝑌𝑇𝑃𝑃. 

In Figure 4.35, rotor 𝑀𝑋𝑋 and 𝑀𝑌𝑌 moment components are given as well. From 

the figure it is seen that they increase as the forward flight speed since aerodynamic 

forces experienced by the blades become asymmetrical as forward flight speed 

increases. Hence, this asymmetrical aerodynamic load profile increases the rotor 

hub moment components 𝑀𝑋𝑋 and 𝑀𝑌𝑌. 
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Figure 4.36. Coning angle, longitudinal and lateral flapping in forward flight. 
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From Figure 4.36, it is observed that coning angle 𝛽0 has a similar characteristic to 

the collective input in the given forward flight speed range. If Eq. (4.106) is 

inspected in detail, it is seen that collective angle 𝜃0 and inflow 𝜈 are the main 

contributing parameters to the coning angle 𝛽0. In Section 4.2 and in Figure 4.31, it 

is shown that inflow and collective input decreases as forward flight speed 

increases. Although, the inflow term appearing in Eq. (4.106) has an opposing 

effect on coning angle 𝛽0, decrease in the collective input is more dominant than 

the inflow. Hence, coning angle 𝛽0 decreases as the forward flight speed increases. 

In addition, it is observed that there is a slight difference between the rigid and 

elastic blade in terms of coning angle. Collective input and torsional twist are the 

only differentiating terms between the rigid and elastic blade contributing the 

coning angle. Collective input difference between rigid and elastic blade is about 

0.01 degrees and the torsional deformation is in the order of 0.05 degrees 

averagely. When these differences are combined, it is seen that coning angle is 

slightly lower for the elastic blade than the rigid blade. 

In Figure 4.36, longitudinal flapping 𝛽1𝑐 increases up to some point then starts to 

decrease as the forward flight increases. In Eq. (4.130), it is seen that longitudinal 

flapping angle 𝛽1𝑐 depends on rotor longitudinal force, fuselage aerodynamic 

pitching moment and rotor hub moment since fuselage drag force terms cancels 

each other for the reference helicopter. In the increasing region, rotor hub moment 

and rotor longitudinal force dominates the longitudinal flapping angle. As forward 

flight speed increases, fuselage aerodynamic pitching moment starts to dominating 

longitudinal flapping angle negatively. Hence, longitudinal flapping starts to 

decrease after some point as the forward flight speed increases. 

Lateral flapping 𝛽1𝑠 decreases as the forward flight speed increases as it could be 

seen from Figure 4.36. In Eq. (4.131), lateral flapping is affected by only rotor 𝑌 

force and rotor hub moment in rolling direction since other terms are zero for the 

reference helicopter. Rotor hub moment component 𝑀𝑋𝑋 increases as the forward 

flight speed increases. However, rotor hub moment component 𝑀𝑋𝑋 is given with 
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negative sign in Eq. (4.131). Therefore, as the forward flight speed increases rotor 

hub moment component 𝑀𝑋𝑋 decreases the lateral flapping angle. Whereas rotor 

lateral force 𝑌 is given same sign with lateral flapping angle such that lateral 

flapping angle would have same tendency with rotor lateral force 𝑌. In Figure 4.35, 

it is observed that 𝑌 force decreases. Hence, lateral flapping angle 𝛽1𝑠 decreases as 

well. 
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CHAPTER 5  

5 DYNAMIC AEROELASTICITY 

Dynamic aeroelasticity is a brand of the aeroelasticity in which aerodynamic loads 

are unsteady and inertial forces are considered in contrast to static aeroelasticity in 

which unsteady effects in the aerodynamic loads and inertial forces are neglected. 

As it is discussed in detail in Ch. 4, helicopter blades are experiencing a time 

dependent load profile. Although one of the main assumptions made in Ch. 4 is 

assuming the aerodynamic loads to be steady, the aerodynamics loads are not 

steady but time dependent actually. Therefore, dynamic aeroelastic analyses should 

be carried as well for the helicopter blades. 

There are many dynamic aeroelastic phenomena for helicopter blades; however, in 

this work main focus is a phenomenon called as flutter. Flutter is a dynamic 

aeroelastic instability in which all inertial, elastic, and aerodynamic forces are 

interacting with each other. Since inertial forces are important in terms of the 

flutter, equations of motion should be revisited. 

5.1 Lagrange’s Equation of Motion 

To be able to analyze a system by writing the equations using the Newton’s laws, 

all the forces must be carefully included to the equations. On the other hand, in 

Lagrange’s equations of motion, forces which do not do any work are ignored. 

Therefore, using Lagrangian form of equations of motion has an advantage over 

using Newton’s laws. 
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 Degrees of Freedom (Independent Coordinates) 

Before developing Lagrangian form of the equations of motion, it should be stated 

that one of the most important concepts in Lagrangian form is degrees of freedom 

or number of independent coordinates. Degrees of freedom or number of 

independent coordinates of a system are needed to know an object’s both location 

and orientation completely. For example, a particle’s location in space could be 

defined completely by knowing the three coordinates of the particle i.e. its x, y, z 

coordinates. Therefore, a particle in space has three degrees of freedom or three 

independent coordinates. 

Another example could be given is a wheel moving by rolling without any 

slippage. To define the exact location of the wheel, either total angle rotated or the 

distance from the starting point must be known. If one of them is known, exact 

location of the wheel could be expressed. Therefore, it could be said that the wheel 

has only one degree of freedom. 

 Generalized Coordinates 

As it is discussed in the previous section, in order to define a location and 

orientation of a system, its independent coordinates must be known. Generalized 

coordinates are set of these independent coordinates which enable us to locate a 

system. For example, a pendulum has three sets of degrees of freedom each of 

which has two elements. First set is the angle and the horizontal position of the 

pendulum, (Θ, 𝑥). Second set is both horizontal and vertical position of the 

pendulum (𝑥, 𝑦). Last set is the angle and the vertical position of the 

pendulum (Θ, 𝑦). In this case generalized coordinates are 𝑥, 𝑦, and Θ. Note that 

since the system has two degrees of freedom, all three coordinates could not be 

independent; therefore, one of them will be dependent. 
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 Lagrange’s Equation of Motion 

Since details of derivation of Lagrange’s equation of motion is out of scope of this 

work, it is directly given as by referring [10]: 

 
𝑑

𝑑𝑡
(
𝜕𝐾

𝜕�̇�𝑖
) −

𝜕𝐾

𝜕𝑞𝑖
+
𝜕𝑃

𝜕𝑞𝑖
= 𝑄𝑖 𝑖 = 1, 2, … , 𝑛 (5.1) 

where 𝐾 is the kinetic energy, 𝑃 is the potential energy, 𝑞𝑖 is the generalized 

coordinates, 𝑄𝑖 is the generalized forces acting on the system. 

 Lagrangian of a Typical Wing Section 

To analyze the flutter phenomenon of a linear aeroelastic system, a spring-

restrained rigid wing model called as typical section model could be used. In the 

typical section, bending stiffness of the wing is modeled as a linear spring and 

torsional stiffness of the wing is modeled as a torsional spring. Both springs are 

attached to the elastic axis. The attachment point is called as refence point. 

 

Figure 5.1. Typical wing section having stiffness in pitching and plunging 

directions. [10] 

In Figure 5.1, the point 𝑄 represents the quarter chord which is the aerodynamic 

center presuming subsonic thin airfoil theory, 𝐶 is the center of gravity of the 



 

 

94 

section, 𝑃 is the reference point located at the elastic axis of the wing, 𝑇 is the 

three-quarter chord point. 𝑘ℎ is the stiffness of the linear spring, 𝑘𝜃 represents the 

torsional spring’s stiffness. To locate 𝑄, 𝐶, 𝑃 and 𝑇 points, half chord 𝑏 and non-

dimensional constants 𝑒 and 𝑎 are used. 𝑈 is the tangential airspeed airfoil 

experiences. 𝜃 is the pitch angle of the airfoil and one of the degrees of freedom of 

the section. ℎ is the second degree of freedom representing the vertical 

displacement of the wing. Motion occurs in the 𝜃 direction called as pitching, 

whereas plunging is defined as the motion in the direction of ℎ. �̂�𝑖 is the unit 

vector defining a right-handed coordinate system which is fixed to the airfoil 

section. 𝑖̂𝑖 is the unit vector defining a reference frame. 

Let us write the Lagrangian of the typical section. Potential energy of the system 

could be written as: 

 𝑃 =
1

2
𝑘ℎℎ

2 +
1

2
𝑘𝜃𝜃

2 (5.2) 

To write the kinetic energy expression, it is necessary to find the velocity of the 

center of gravity which is: 

 𝑉𝐶 = 𝑉𝑃 + �̇��̂�3 × 𝑏[(1 + 𝑎) − (1 + 𝑒)]�̂�1 (5.3) 

𝑉𝑃 is the velocity of the reference point 𝑃 in the inertial frame and it is given as: 

 𝑉𝑃 = −ℎ̇𝑖̂2 (5.4) 

Negative sign in Eq. (5.4) is coming from the definition of the plunging direction. 

When Figure 5.1 is inspected, it is seen that plunging motion is defined in the 

negative direction of the 𝑖̂2. Hence, velocity of the mass center becomes: 

 𝑉𝐶 = −ℎ̇𝑖̂2 + 𝑏�̇�(𝑎 − 𝑒)�̂�2 (5.5) 

Kinetic energy of the section is: 

 𝐾 =
1

2
𝑚𝑉𝐶 ∙ 𝑉𝐶 +

1

2
𝐼𝐶  �̇� ∙ �̇� (5.6) 
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where 𝐼𝐶 is the mass moment of inertia of the airfoil about the center of gravity 𝐶. 

By putting Eq. (5.5) into Eq. (5.6), kinetic energy of the airfoil is obtained as: 

 
𝐾 =

1

2
𝑚(ℎ̇2 + 2𝑏(𝑒 − 𝑎)ℎ̇�̇� + 𝑏2(𝑎 − 𝑒)2�̇�2) +

1

2
𝐼𝐶  �̇�

2

=
1

2
𝑚(ℎ̇2 + 2𝑏𝑥𝜃ℎ̇�̇�) +

1

2
𝐼𝑃�̇�

2 

(5.7) 

where 𝑥𝜃 is defined as 𝑒 − 𝑎 and 𝐼𝑃 is defined as 𝐼𝐶 +𝑚𝑏
2𝑥𝜃

2. 

To complete the Lagrangian of the airfoil section, it is needed to write the 

generalized forces w.r.t the 𝜃 and ℎ coordinates. In [10], generalized forces are 

given as: 

 𝑄ℎ = −𝐿′ (5.8) 

 𝑄𝜃 = 𝑀′ = 𝑏 (
1

2
+ 𝑎) 𝐿′ +𝑀1/4 (5.9) 

where 𝐿′ is the sectional aerodynamic lift, 𝑀1/4 is the aerodynamic moment at the 

aerodynamic center 𝑄. Note that, the reason of negative sign of 𝐿′ is that 𝐿′ is in the 

direction of 𝑖̂2 which is opposite direction of the generalized coordinate ℎ. 

Letting 𝑞1 = ℎ, and 𝑞2 = 𝜃 and putting Eq’s (5.2), (5.7), (5.8) and (5.9) into Eq. 

(5.1), equations of motion of the airfoil system could be written as:   

 

𝑑

𝑑𝑡
(
𝜕𝐾

𝜕ℎ̇
) −

𝜕𝐾

𝜕ℎ
+
𝜕𝑃

𝜕ℎ
= 𝑄ℎ

𝑑

𝑑𝑡
(
𝜕𝐾

𝜕�̇�
) −

𝜕𝐾

𝜕𝜃
+
𝜕𝑃

𝜕𝜃
= 𝑄𝜃

 

 

(5.10) 

 

𝑚ℎ̈ +𝑚𝑏𝑥𝜃�̈� + 𝑘ℎℎ = −𝐿′

𝐼𝑃�̈� + 𝑚𝑏𝑥𝜃ℎ̈ + 𝑘𝜃ℎ = 𝑀′ = 𝑏 (
1

2
+ 𝑎) 𝐿′ +𝑀1/4

 (5.11) 
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Eq. (5.11) could be written in matrix form: 

 [
𝑚 𝑚𝑏𝑥𝜃

𝑚𝑏𝑥𝜃 𝐼𝑃
] {
ℎ̈

�̈�
} + [

𝑘ℎ 0
0 𝑘𝜃

] {
ℎ

𝜃
} = {−𝐿′

𝑀′
} (5.12) 

To simplify Eq. (5.12), introduce uncoupled natural frequencies of the airfoil 

section: 

 𝜔ℎ = √
𝑘ℎ
𝑚
 𝜔𝜃 = √

𝑘𝜃
𝐼𝑃
  (5.13) 

If Eq. (5.13) is put into Eq. (5.12) and plunging motion ℎ is non-dimensionalized 

by dividing by half chord 𝑏, we obtain: 

 [
𝑚𝑏2 𝑚𝑏2𝑥𝜃
𝑚𝑏2𝑥𝜃 𝐼𝑃

] {

ℎ̈

𝑏

�̈�

} + [
𝑚𝑏2𝜔ℎ

2 0

0 𝐼𝑃𝜔𝜃
2] {

ℎ

𝑏

𝜃

} = {−𝐿′𝑏
𝑀′

} (5.14) 

5.2 Steady Loads Flutter 

To understand general behavior of the system given in Eq. (5.14), let us assume 

that aerodynamic loads are steady such that: 

 𝐿′ = 𝐹𝑓2𝜋𝜌𝑏𝑈
2𝜃 𝑀1/4 = 0  (5.15) 

where 𝐹𝑓 is the ratio of lift-curve slope 𝑐𝑙𝛼 to 2𝜋 such that 𝐹𝑓 = 𝑐𝑙𝛼/2𝜋. Although 

the thin-airfoil theory suggests that 2𝜋 should be used for the lift-curve slope, [3] 

and [10] state that if 𝑐𝑙𝛼 value is available of a wing then 𝑐𝑙𝛼 should be used to 

obtain aerodynamic loads. By putting Eq. (5.15) into Eq. (5.14), and collecting all 

terms on one side, we obtain: 

 [
𝑚𝑏2 𝑚𝑏2𝑥𝜃
𝑚𝑏2𝑥𝜃 𝐼𝑃

] {

ℎ̈

𝑏

�̈�

} + [
𝑚𝑏2𝜔ℎ

2 𝐹𝑓2𝜋𝜌𝑏
2𝑈2

0 𝐼𝑃𝜔𝜃
2 − (1 + 2𝑎)𝐹𝑓𝜋𝜌𝑏

2𝑈2
] {

ℎ

𝑏

𝜃

} = {
0

0
} (5.16) 
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Now let us assume that pitching and plunging motion could be defined as: 

 ℎ = ℎ̅𝑒𝑠𝑡 𝜃 = �̅�𝑒𝑠𝑡  (5.17) 

By combining Eq. (5.17) with Eq. (5.16), we obtain: 

 [
𝑚𝑏2𝑠2 +𝑚𝑏2𝜔ℎ

2 𝑚𝑏2𝑠2𝑥𝜃 + 𝐹𝑓2𝜋𝜌𝑏
2𝑈2

𝑚𝑏2𝑠2𝑥𝜃 𝐼𝑃𝜔𝜃
2 + 𝐼𝑃𝑠

2 − (1 + 2𝑎)𝐹𝑓𝜋𝜌𝑏
2𝑈2

] {

ℎ

𝑏

̅

�̅�

} = {
0

0
} (5.18) 

To simplify Eq. (5.18), let us define some non-dimensional parameters: 

 

𝑟𝑎
2 =

𝐼𝑃
𝑚𝑏2

  𝜑 =
𝜔ℎ
𝜔𝜃

𝜇𝑚 =
𝑚

𝜌𝜋𝑏2
  𝑉𝑤 =

𝑈

𝑏𝜔𝜃

 (5.19) 

𝑟𝑎
2 is non-dimensional radius of gyration, 𝜑 is the ratio of the uncoupled plunging 

natural frequency to the pitching natural frequency of the airfoil, 𝜇𝑚 is the mass 

ratio parameter, 𝑉𝑤 is non-dimensional airspeed.  

After defining these non-dimensional parameters, let us 𝑠 is defined as 𝑝𝑈/𝑏 to 

solve Eq. (5.18), where 𝑝 is a non-dimensional complex parameter and 𝑈 is the 

tangential velocity of the section which consists of two parts: first one is the 

velocity due to rotational speed and second one is the helicopter forward flight 

speed, i.e. 𝑈 = 𝛺𝑟 + 𝑉. To be on the safe side, 𝑈 is calculated at 𝜓 = 𝜋/2 where 𝑈 

is maximum. Therefore, Eq. (5.18) becomes as: 

 

[
 
 
 
 𝑝2 +

𝜑2

𝑉𝑤2
𝑥𝜃𝑝

2 +
2𝐹𝑓

𝜇𝑚

𝑥𝜃𝑝
2 𝑟𝑎

2𝑝2 +
𝑟𝑎
2

𝑉𝑤2
−
𝐹𝑓

𝜇𝑚
(1 + 2𝑎)

]
 
 
 
 

{

ℎ

𝑏

̅

�̅�

} = {
0

0
} (5.20) 
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To have a non-trivial solution for Eq. (5.20), 

 |
|
𝑝2 +

𝜑2

𝑉𝑤2
𝑥𝜃𝑝

2 +
2𝐹𝑓

𝜇𝑚

𝑥𝜃𝑝
2 𝑟𝑎

2𝑝2 +
𝑟𝑎
2

𝑉𝑤2
−
𝐹𝑓

𝜇𝑚
(1 + 2𝑎)

|
| = 0 (5.21) 

must be satisfied. As it could be observed form Eq. (5.21), roots change with 𝑉𝑤. 

Therefore, the determinant should be solved separately for changing 𝑉𝑤 values. 

In general, two complex conjugate roots will be obtained from the determinant for 

different 𝑉𝑤 values and the roots will be in the form of: 

 𝑝𝑛 =
𝑏

𝑈
(𝛤𝑛 ± 𝑖𝛺𝑛) 𝑛 = 1,2 (5.22) 

If the roots are multiplied by 𝑉𝑤: 

 𝑉𝑤𝑝𝑛 =
𝑈

𝑏𝜔𝜃

𝑏

𝑈
(𝛤𝑛 ± 𝑖𝛺𝑛) =

𝛤𝑛
𝜔𝜃

± 𝑖
𝛺𝑛
𝜔𝜃

 𝑛 = 1,2 (5.23) 

So that the roots are connected to a known parameter ωθ. If the relation 𝑠 and 𝑝 is 

used and Eq. (5.23) is combined with Eq. (5.17), plunging and pitching motion will 

be: 

 
ℎ = ℎ̅𝑒𝑝

𝑈
𝑏
𝑡 𝜃 = �̅�𝑒𝑝

𝑈
𝑏
𝑡

ℎ𝑛 = ℎ̅𝑛𝑒
(𝛤𝑛±𝑖𝛺𝑛)𝑡 𝜃𝑛 = �̅�𝑛𝑒

(𝛤𝑛±𝑖𝛺𝑛)𝑡

 (5.24) 

where ℎ̅𝑛 and �̅�𝑛 are the finite magnitudes of the motion. The exponential part of 

the motions 𝑒(Γ𝑛±𝑖Ω𝑛)𝑡 defines the motion characteristics such that whether the 

motion is oscillatory or not, or the motion is divergent or convergent. 𝑒±𝑖Ω𝑛𝑡 is the 

oscillation part. If Ω𝑛 ≠ 0 then the motion will be oscillatory. The other part 𝑒Γ𝑛𝑡 

is called as the damping. If Γ𝑛 > 0 for a 𝑉𝑤 value, then the steady solution of the 

motion (𝑡 → ∞) blows up. Therefore, the lowest 𝑉𝑤 value which satisfies the 

condition Γ𝑛 > 0 is called as flutter speed. 
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Let us inspect the reference blade whose 𝑥𝜃 = 0.056, 𝜇𝑚 = 35.86, 𝑟𝑎
2 = 0.223 are 

given. In [12], a general approach is modeling the blade characteristics based 

on %75 radius. Therefore, in this work, a section of the blade is inspected instead 

of full three-dimensional blade model. To see how flutter speed prediction changes 

with if the section is taken from %95 radius of the blade, a section taken from %95 

radius of the reference blade is also considered in the flutter calculations. Hence, 

flutter speed analyses are conducted for two sections. If the section is taken %75 

radius of the reference blade non-dimensional natural frequency ratio becomes 

𝜑0.75 = 0.146, whereas if the section is taken from %95 radius of the reference 

blade 𝜑0.95 = 0.114. 

When damping curve in Figure 5.2 is inspected, it is seen that damping is zero 

which makes the motions pure oscillatory up to a certain tangential velocity. 

However, one of the damping Γ value becomes greater than zero after a certain 

value tangential speed which makes the system oscillatory divergent. Therefore, 

the 𝑉𝑤 at which Γ becomes positive is called as flutter speed and showed as 𝑉𝐹. If 

the section is taken from the blade’s %75 radius, flutter speed is found as 

approximately 459 m/s which is well beyond the experienced tangential velocity 

not only in hover but also at maximum forward flight speed 35 m/s. Therefore, it 

could be said that the blade does not experience flutter in the flight envelope under 

steady load assumption. 
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Figure 5.2. Section’s tangential velocity versus damping and modal frequency at 

%75 radius of the reference blade under steady loads. 
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Figure 5.3. Section’s tangential velocity versus damping and modal frequency at 

%95 radius of the reference blade under steady loads. 
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If the section is taken from the %95 radius of the reference blade, flutter speed is 

found as about 444 m/s which is again beyond the flight envelope. Therefore, it 

could be concluded that by assuming steady loads the reference helicopter does not 

experience any flutter. 

If the flutter speeds obtained for %75 radius and %95 radius are compared, it will 

be seen that flutter speed of first one is greater than the latter one as expected 

although all non-dimensional parameters defined in Eq. (5.19) are same except the 

non-dimensional natural frequency ratio 𝜑 for both sections. Flutter determinant in 

Eq. (5.21) is a fourth-order polynomial in terms of 𝑝 whose solution depends on the 

natural frequency ratio 𝜑; hence, flutter determinant should be solved for each 

designed 𝜑.  

In Figure 5.2 and Figure 5.3, another interesting phenomenon occurs for the given 

system. Modal frequencies coalescence at the flutter speed 𝑉𝐹. This situation occurs 

if the loads are assumed to be steady. If the loads are not steady, the modal 

frequencies may not intersect at the flutter speed, but it will be observed that 

general tendency of the systems is that modal frequencies are getting closer to each 

other as the tangential velocity getting closer to the flutter speed in the following 

sections. 

5.3 Theodorsen’s Unsteady Aerodynamics 

In Section 5.2, flutter analysis is done by assuming the aerodynamic loads are 

steady. Loads are given for the angle of attack 𝜃 only. However, it is easy to see 

that angle of attack is not only depending 𝜃 but also depending on the plunging 

motion. During the plunging motion, a vertical speed is experienced by the airfoil 

which creates an increment to the pitching angle 𝜃. Therefore, the angle of attack 

could be written as: 

 𝛼𝑒𝑓𝑓 = 𝜃 +
ℎ̇

𝑈
 (5.25) 
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Another term which contributes to the angle of attack is pitching rate �̇� of the 

airfoil. While writing the Lagrangian of the airfoil, it is shown that a perpendicular 

speed occurs due to �̇�. Perpendicular speed of the aerodynamic center due to the 

pitching rate is given as 𝑏 (
1

2
− 𝑎) �̇�. Adding pitch rate effect to Eq. (5.25): 

 
𝛼𝑒𝑓𝑓 = 𝜃 +

ℎ̇

𝑈
+
𝑏 (
1
2 − 𝑎) �̇�

𝑈
 

(5.26) 

Therefore, sectional lift of the airfoil 𝐿′ becomes as: 

 𝐿′ = 𝐹𝑓2𝜋𝜌𝑈𝑏 (ℎ̇ + 𝑈𝜃 + 𝑏 (
1

2
− 𝑎) �̇�) (5.27) 

where 𝐹𝑓 is defined as 𝑐𝑙𝛼 2𝜋⁄  in Section 5.2. By using effective angle of attack 

expression given in Eq. (5.26), Theodorsen derived an unsteady aerodynamic 

theory for thin airfoils undergoing small amplitude simple harmonic motions in an 

incompressible medium. Since details of the derivation is out of scope of this work, 

derivation is left to the [8]. Theodorsen’s unsteady aerodynamic lift and pitching 

moment is given directly: 

 

𝐿′ = 𝐹𝑓2𝜋𝜌𝑈𝑏𝐶(𝑘) [ℎ̇ + 𝑈𝜃 + 𝑏 (
1

2
− 𝑎) �̇�] + 𝜋𝜌𝑏2(ℎ̈ + 𝑈�̇� − 𝑏𝑎�̈�)

𝑀1/4 = −𝜋𝜌𝑏
3 [
1

2
ℎ̈ + 𝑈�̇� + 𝑏 (

1

8
−
𝑎

2
) �̈�]

 (5.28) 

First term appearing in the Theodorsen’s lift expression is called as circulatory 

load. The other term is called as non-circulatory load. Whereas, the pitching 

moment expression does not have any circulatory term, it is purely non-circulatory. 

Since the Theodorsen’s theory assumes that simple harmonic motion, pitching and 

plunging motions could be expressed as: 

 ℎ = ℎ̅𝑒𝑖𝜔𝑡 𝜃 = �̅�𝑒𝑖𝜔𝑡 (5.29) 

where 𝜔 is the oscillation frequency of the states.  
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𝐶(𝑘) in Eq. (5.28) is called as Theodorsen’s lift deficiency function and it is 

given as [8]: 

 𝐶(𝑘) =
𝐻1
(2)(𝑘)

𝐻1
(2)(𝑘) + 𝑖𝐻0

(2)(𝑘)
 (5.30) 

where 𝐻𝑛
(2)(𝑘) are the Hankel functions of the second kind and 𝑘 is called as 

reduced frequency which is given as: 

 𝑘 =
𝜔𝑏

𝑈
 (5.31) 

𝑏 is the half-chord of the blade and 𝑈 is the tangential velocity of the blade section 

in Eq. (5.31).  

As it could be seen from Eq. (5.30), the lift deficiency function 𝐶(𝑘) is a complex 

function. Therefore, 𝐶(𝑘) could be written as 𝐶(𝑘) = 𝐹(𝑘) + 𝑖𝐺(𝑘) where 𝐹(𝑘) 

and 𝐺(𝑘) are real and imaginary parts of the 𝐶(𝑘) respectively. Theodorsen’s lift 

deficiency function 𝐶(𝑘), its real and imaginary parts w.r.t the reduced frequency 

are given in Figure 5.4 and Figure 5.5 respectively. 
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Figure 5.4. Theodorsen’s lift deficiency function C(k) w.r.t the reduced frequency 

k. 
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Figure 5.5. Real and imaginary parts of the C(k) w.r.t the reduced frequency k. 

After defining 𝐿′ and 𝑀1/4 according to the Theodorsen’s theory, let us re-write the 

unsteady lift and pitching moment given in Eq. (5.28) by using the plunging and 

pitching motion given in Eq. (5.29) recalling 𝑀′ = 𝑏 (
1

2
+ 𝑎) 𝐿′ +𝑀1/4: 

 
𝐿′ = {𝐹𝑓2𝜋𝜌𝑈𝑏𝐶(𝑘) [𝑖𝜔ℎ̅ + 𝑈�̅� + 𝑖𝜔𝑏 (

1

2
− 𝑎) �̅�]

+ 𝜋𝜌𝑏2(−𝜔2ℎ̅ + 𝑖𝜔𝑈�̅� + 𝜔2𝑏𝑎�̅�)} 𝑒𝑖𝜔𝑡 

(5.32) 

 

𝑀′ = 𝑏 (
1

2
+ 𝑎) 𝐿′

+ {−𝜋𝜌𝑏3 [
1

2
𝜔2ℎ̅ + 𝑖𝜔𝑈�̅� − 𝜔2𝑏 (

1

8
−
𝑎

2
) �̅�]} 𝑒𝑖𝜔𝑡 

 

(5.33) 
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Multiply the circulatory lift term by 𝑏𝜔 𝑏𝜔⁄ , non-circulatory lift term by 

−𝑏𝜔2
−𝑏𝜔2
⁄  in Eq. (5.32) and use the reduced frequency definition to replace 𝑈 

by 𝜔𝑏 𝑘⁄ : 

 

𝐿′ = −𝜋𝜌𝑏3𝜔2 {[1 −
2𝑖𝐹𝑓𝐶(𝑘)

𝑘
]
ℎ̅

𝑏

+ [−𝑎 −
𝑖 (1 + (1 − 2𝑎)𝐹𝑓𝐶(𝑘))

𝑘
−
2𝐹𝑓𝐶(𝑘)

𝑘2
] �̅�} 𝑒𝑖𝜔𝑡 

(5.34) 

By applying similar approach, multiply the lift contribution part by 𝑏
2𝜔2

𝑏2𝜔2
⁄ , 

multiply the non-circulatory part by 𝑏𝜔 𝑏𝜔⁄  in Eq. (5.33) and replace the velocity 

term 𝑈 by 𝜔𝑏 𝑘⁄ : 

 

𝑀′ = 𝜋𝜌𝑏4𝜔2 {[−𝑎 +
𝑖(2𝑎 + 1)𝐹𝑓𝐶(𝑘)

𝑘
]
ℎ̅

𝑏
+ [

1

8
+ 𝑎2

−
𝑖 (
1
2 − 𝑎) (1 −

(2𝑎 + 1)𝐹𝑓𝐶(𝑘))

𝑘
+
(2𝑎 + 1)𝐹𝑓𝐶(𝑘)

𝑘2
] �̅�} 𝑒𝑖𝜔𝑡 

(5.35) 

To shorten the lengthy expressions in Eq’s. (5.34) and (5.35), let us define some 

non-dimensional complex aerodynamic coefficients: 

 

𝐿ℎ(𝑘) = 1 −
2𝑖𝐹𝑓𝐶(𝑘)

𝑘

𝐿𝜃(𝑘) = −𝑎 −
2𝑖 (

1
2 − 𝑎) 𝐹𝑓𝐶

(𝑘) + 𝑖

𝑘
−
2𝐹𝑓𝐶(𝑘)

𝑘2

𝑀ℎ(𝑘) =  −𝑎 +
2𝑖 (

1
2 + 𝑎)𝐹𝑓𝐶

(𝑘)

𝑘

𝑀𝜃(𝑘) =
1

8
+ 𝑎2 +

2𝑖 (
1
4 − 𝑎

2) 𝐹𝑓𝐶(𝑘) − 𝑖 (
1
2 − 𝑎)

𝑘
+
2 (
1
2 + 𝑎)𝐹𝑓𝐶

(𝑘)

𝑘2

 (5.36) 
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Therefore, Eq’s. (5.34) and (5.35) could be expressed by using the non-dimensional 

aerodynamic coefficients given in Eq. (5.36): 

 

𝐿′ = −𝜋𝜌𝑏3𝜔2 (𝐿ℎ(𝑘)
ℎ̅

𝑏
+ 𝐿𝜃(𝑘)�̅�) 𝑒

𝑖𝜔𝑡

𝑀′ = 𝜋𝜌𝑏4𝜔2 (𝑀ℎ(𝑘)
ℎ̅

𝑏
+ 𝑀𝜃(𝑘)�̅�) 𝑒

𝑖𝜔𝑡

 (5.37) 

If these unsteady aerodynamic loads are put into the Lagrangian of a typical wing 

section given in Eq. (5.12): 

 

[
𝑚𝑏 𝑚𝑏𝑥𝜃

𝑚𝑏𝑥𝜃
𝐼𝑃
𝑏

] {
ℎ̈

�̈�
} + [

𝑏𝑘ℎ 0

0
𝑘𝜃
𝑏

] {
ℎ

𝜃
}

− 𝜋𝜌𝑏3𝜔2 [
𝐿ℎ(𝑘) 𝐿𝜃(𝑘)
𝑀ℎ(𝑘) 𝑀𝜃(𝑘)

] {
ℎ

𝑏

̅

�̅�

} 𝑒𝑖𝜔𝑡 = {
0

0
} 

(5.38) 

Substitute the harmonic motion assumption from Eq. (5.29) and non-dimensional 

parameters defined in Eq. (5.19): 

 [
𝜇𝑚 (1 − 𝜑

2 (
𝜔𝜃
𝜔
)
2

) + 𝐿ℎ(𝑘) 𝜇𝑚𝑥𝜃 + 𝐿𝜃(𝑘)

𝜇𝑚𝑥𝜃 +𝑀ℎ(𝑘) 𝜇𝑚𝑟𝑎
2 (1 − (

𝜔𝜃
𝜔
)
2

) +𝑀𝜃(𝑘)

] {

ℎ

𝑏

̅

�̅�

} = {
0

0
} (5.39) 

To have a non-trivial solution, determinant of the matrix given in Eq. (5.39) must 

be zero. 

 |
𝜇𝑚 (1 − 𝜑

2 (
𝜔𝜃
𝜔
)
2

) + 𝐿ℎ(𝑘) 𝜇𝑚𝑥𝜃 + 𝐿𝜃(𝑘)

𝜇𝑚𝑥𝜃 +𝑀ℎ(𝑘) 𝜇𝑚𝑟𝑎
2 (1 − (

𝜔𝜃
𝜔
)
2

) + 𝑀𝜃(𝑘)

| = 0 (5.40) 

The only unknown term in Eq. (5.40) is 𝜔 for a given reduced frequency 𝑘. 

Therefore, 𝜔 should be solved by varying reduced frequency 𝑘. In general, 𝜔 will 

be a complex number such that: 

 𝜔 = 𝜔𝑅 + 𝑖𝜔𝑖 (5.41) 
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If 𝜔 is put into Eq. (5.29) plunging and pitching motion will be: 

 ℎ = ℎ̅𝑒𝑖𝜔𝑡 = ℎ̅𝑒𝑖𝜔𝑅𝑡𝑒−𝜔𝑖𝑡 𝜃 = �̅�𝑒𝑖𝜔𝑡 = �̅�𝑒
𝑖𝜔𝑅𝑡𝑒−𝜔𝑖𝑡 (5.42) 

where 𝑒𝑖𝜔𝑅𝑡 is the oscillatory part and 𝑒−𝜔𝑖𝑡 is the damping part. If 𝜔𝑖 < 0, a 

divergent motion will occur. Hence, the 𝑘 value which satisfies 𝜔𝑖 < 0 becomes 

the flutter reduced frequency from which flutter speed could be found by the 

relation 𝑉𝐹 = 𝜔𝑅𝑏 𝑘⁄ . 

Normalized damping coefficient and non-dimensional modal frequency results are 

given in Figure 5.6 and Figure 5.7 for %75 and %95 radius of the blade 

respectively. In Figure 5.6, flutter speed is found as 481 m/s if the section is taken 

from the %75 radius of the blade. If the airfoil section is taken from the %95 radius 

of the blade, flutter speed is found as 457 m/s in Figure 5.7. 

If predicted flutter speeds are compared, it is seen that flutter speed of the section 

taken from %75 radius is higher than the section taken from %95 radius as 

observed in Section 5.2; however, non-dimensional modal frequencies do not 

coalescence if Theodorsen’s unsteady aerodynamic theory is implemented contrast 

to the situation obtained in Section 5.2 since aerodynamic damping terms coming 

from Theodorsen’s unsteady aerodynamic theory affect the modal frequencies. 
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Figure 5.6. Section’s tangential velocity versus damping and modal frequency at 

%75 of the radius of the reference blade under Theodorsen’s unsteady aerodynamic 

loads. 
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Figure 5.7. Section’s tangential velocity versus damping and modal frequency at 

%95 of the radius of the reference blade under Theodorsen’s unsteady aerodynamic 

loads. 
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5.4 K-Method 

In Sections 5.2 and 5.3, flutter determinants are solved according to the Lagrangian 

of the system given in Eq. (5.12) without modeling the structural damping of the 

airfoil. In this section, structural damping of the airfoil will be modeled as well. 

Structural experiments showed that during a simple harmonic motion, structural 

damping dissipates energy from the system which is independent of frequency; 

however, proportional to the square of the amplitude. Therefore, the structural 

damping could be modeled as damping force which is proportional to the 

displacement and in phase with the velocity.  

To include the structural damping terms to the Lagrangian Eq. (5.12), let us define 

the structural damping terms 𝐷ℎ and 𝐷𝜃 which are defined as: 

 𝐷ℎ = −𝑖𝑔ℎ𝑘ℎℎ 𝐷𝜃 = −𝑖𝑔𝜃𝑘𝜃ℎ (5.43) 

where 𝑔ℎ and 𝑔𝜃 are the damping coefficients. 

By including Eq. (5.43), Lagrangian of the wing section Eq. (5.12) could be written 

as: 

 [
𝑚 𝑚𝑏𝑥𝜃

𝑚𝑏𝑥𝜃 𝐼𝑃
] {
ℎ̈

�̈�
} + [

𝑘ℎ 0
0 𝑘𝜃

] {
ℎ

𝜃
} = {

−𝐿′ + 𝐷ℎ
𝑀′ + 𝐷𝜃

} (5.44) 

Re-arrange Eq. (5.44): 

 [
𝑚 𝑚𝑏𝑥𝜃

𝑚𝑏𝑥𝜃 𝐼𝑃
] {
ℎ̈

�̈�
} + [

(1 + 𝑖𝑔ℎ)𝑘ℎ 0
0 (1 + 𝑖𝑔𝜃)𝑘𝜃

] {
ℎ

𝜃
} = {

−𝐿′

𝑀′ } (5.45) 

Scanlan and Rosenbaum (1948) [10] suggests that 𝑔ℎ and 𝑔𝜃 could be treated as if 

they were equal to an unknown 𝑔. Now introduce a new eigenvalue for the flutter 

determinant given in Eq. (5.40). 

 𝑍 = (
𝜔𝜃
𝜔
)
2

(1 + 𝑖𝑔) (5.46) 
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The flutter determinant becomes as: 

 |
𝜇𝑚(1 − 𝜑

2𝑍) + 𝐿ℎ(𝑘) 𝜇𝑚𝑥𝜃 + 𝐿𝜃(𝑘)

𝜇𝑚𝑥𝜃 +𝑀ℎ(𝑘) 𝜇𝑚𝑟𝑎
2(1 − 𝑍) + 𝑀𝜃(𝑘)

| = 0 (5.47) 

from which 𝑍 could be solved for a given reduced frequency 𝑘. Since Eq. (5.47) is 

a quadratic equation in terms of 𝑍, there will two complex roots of 𝑍 which could 

be written as: 

 𝑍𝑛 = (
𝜔𝜃
𝜔𝑛
)
2

(1 + 𝑖𝑔𝑛) 𝑛 = 1,2 (5.48) 

After solving the eigenvalue 𝑍, frequency of the states 𝜔𝑛 and structural damping 

coefficient 𝑔𝑛 could be obtained from the real and imaginary part of the 𝑍𝑛 

respectively.  

 

(
𝜔𝜃
𝜔𝑛
)
2

= 𝑅𝑒(𝑍𝑛)

𝜔𝑛 =
𝜔𝜃

√𝑅𝑒(𝑍𝑛)

 (5.49) 

 

 

𝑅𝑒(𝑍𝑛)𝑔𝑛 = 𝐼𝑚(𝑍𝑛)

𝑔𝑛 =
𝐼𝑚(𝑍𝑛)

𝑅𝑒(𝑍𝑛)

 
(5.50) 

Note that flutter determinant in Eq. (5.47) should be solved for a varying reduced 

frequency 𝑘. The flutter speed is obtained where 𝑔𝑛 = 0 is satisfied. 
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By using K-Method, flutter speed at %75 radius of the blade is found as about 481 

m/s in Figure 5.8 which is beyond the flight envelope; hence, no flutter will be 

experienced during a flight. Another point should be emphasized is that at the 

flutter speed, natural frequencies do not coalescence since there are both structural 

and aerodynamic damping terms; however, they get close to each other. 

Flutter analysis is done for the section at %95 radius as well. It is found that flutter 

speed is 457 m/s. It is seen that predicted flutter speed is higher if the section is 

taken from the %75 radius of the blade as obtained in Sections 5.2 and 5.3. 
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Figure 5.8. Section’s tangential velocity versus damping and modal frequency at 

%75 of the radius of the reference blade under Theodorsen’s unsteady aerodynamic 

loads with structural damping (K-Method). 
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Figure 5.9. Section’s tangential velocity versus damping and modal frequency at 

%95 of the radius of the reference blade under Theodorsen’s unsteady aerodynamic 

loads with structural damping (K-Method). 
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5.5 Loewy’s Unsteady Aerodynamics 

As it is discussed in Section 4.1, helicopter rotors create an inflow and blades’ 

wake interact with other blades which makes the unsteady aerodynamic studies 

more complex for the helicopters than the fixed wing aircrafts. In 1957, Loewy 

developed an unsteady aerodynamic theory for a rotor near hovering by accounting 

the wake returning from the blades of rotor. [14] 

Leaving the derivation of Loewy’s unsteady aerodynamic theory to Ref. [11], lift 

deficiency function for Loewy’s unsteady theory is given as [11]: 

 𝐶′(𝑘) =
𝐻1
(2)(𝑘) + 2𝐽1(𝑘)𝑊′(𝑘, 𝜆, 𝜎,𝑚)

𝐻1
(2)(𝑘) + 𝑖𝐻0

(2)(𝑘) + 2[𝐽1(𝑘) + 𝑖𝐽0(𝑘)]𝑊′(𝑘, 𝜆, 𝜎,𝑚)
 (5.51) 

where 𝐽𝑛(𝑘) are the Bessel function of the first kind, 𝐻𝑛
(2)(𝑘) are the Hankel 

functions of the second kind and 𝑊′ is called as returning wake effect and it could 

be expressed as from [14]: 

 𝑊′(𝑘, 𝜆, 𝜎,𝑚) =
1

𝑒4𝑘𝜆/𝜎𝑒𝑖2𝜋𝑚 − 1
 (5.52) 

where 𝑘 is the reduced frequency, 𝜆 is the non-dimensional inflow ratio, 𝜎 is the 

rotor solidity which is given as 𝜎 = 𝑁𝑏𝑐/𝜋𝑅 and 𝑚 is the non-dimensional 

frequency ratio of oscillatory frequency to rotational frequency and given as     

𝑚 = 𝜔/Ω. Note that in [12] it is stated that if same wake spacing and proper 𝑚 is 

used, 𝐶′(𝑘) of multi-bladed case is identical to single-bladed 𝐶′(𝑘). Therefore, in 

this work single-bladed case of the W′ is used to find lift deficiency function. 

If the velocity of the inflow is too high i.e., 𝜆 → ∞ blades do not interact with the 

returning wakes which makes 𝑊′ approaches to zero. Hence, 𝑙𝑖𝑚
𝜆→∞

𝐶′(𝑘) = 𝐶(𝑘). 

Another condition to satisfy the 𝐶′(𝑘) = 𝐶(𝑘) is increasing the reduced frequency 

𝑘. Denominator of the returning wake effect approaches to infinity as 𝑘 → ∞ 

which makes 𝑊′ → 0. Therefore, 𝑙𝑖𝑚
𝑘→∞

𝐶′(𝑘) = 𝐶(𝑘). 
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Figure 5.10. Comparison of Loewy’s lift deficiency functions of the reference 

blade for different wake phasing with Theodorsen’s lift deficiency function w.r.t 

the reduced frequency k. 
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Figure 5.11. Comparison of real and imaginary parts of Loewy’s lift deficiency 

functions of the reference blade for different wake phasing ratios with 

Theodorsen’s lift deficiency function w.r.t the reduced frequency k. 
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If 𝑊′ is inspected in detail, it would be seen that there is a 𝑒𝑖2𝜋𝑚 term in the 

denominator of the returning wake effect 𝑊′. Since 𝑒𝑖2𝜋𝑚 term is a periodic 

function being as same for every integer of 𝑚, rational part of 𝑚 is interested. 

Hence, Figure 5.10 and Figure 5.11 are drawn for 𝑚 = 0, 0.25, 0.5, 0.75 which are 

equal to 𝑚 = 𝑁,𝑁 +
1

4
, 𝑁 +

1

2
, 𝑁 +

3

4
 respectively where 𝑁 is an integer. 

In Figure 5.10 and Figure 5.11, it is observed that for 𝑘 > 1 Theodorsen’s and 

Loewy’s lift deficiency functions becomes identical for given frequency ratios as 

expected. However, for frequency ratio 𝑚 = 𝑁 and 𝑘 < 1, the difference between 

Loewy’s and Theodorsen’s lift deficiency function is significant. In fact, the main 

difference occurs in the real part of the 𝐶′(𝑘) since wake returning effect 𝑊′ 

becomes purely real for 𝑚 = 𝑁. 

If the non-dimensional complex aerodynamic coefficients 𝐿ℎ(𝑘), 𝐿𝜃(𝑘), 𝑀ℎ(𝑘) and 

𝑀𝜃(𝑘) are updated with 𝐶′(𝑘) for selected frequency ratio 𝑚, flutter determinant 

given in Eq. (5.47) could be solved by implementing Loewy’s unsteady 

aerodynamic theory. Damping and non-dimensional frequency analyses of the 

reference blade by using 𝐶′(𝑘) are given in Figure 5.12 and Figure 5.13. 
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Figure 5.12. Section’s tangential velocity versus damping and modal frequency at 

%75 of the radius of the reference blade under Loewy’s unsteady aerodynamic 

loads with structural damping (K-Method). 
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Figure 5.13. Section’s tangential velocity versus damping and modal frequency at 

%95 of the radius of the reference blade under Loewy’s unsteady aerodynamic 

loads with structural damping (K-Method). 
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Predicted flutter speed of the reference blade is found as 463 m/s if the frequency 

ratio is assumed to be as a non-integer, i.e., 𝑚 ≠ 0 and the section is taken from the 

blade’s %75 radius, whereas if the section is taken from %95 radius of the blade, 

flutter speed is found as 474 m/s for 𝑚 ≠ 0.  

In Figure 5.12 and Figure 5.13, it is observed that all damping and modal frequency 

curves are similar to each other and zero-damping boundaries are crossed at speeds  

which are close to each other if the frequency ratios are different than an integer, 

i.e., 𝑚 ≠ 0. Main reason behind this situation is that aerodynamic damping in 

pitching direction is higher for 𝑚 = 0 than other frequency ratios. Therefore, 

flutter prediction is the highest for 𝑚 = 0. 

5.6 Modified Loewy’s (Finite Wake) Lift Deficiency Function 

If the derivation of Eq. (5.51) is inspected, it would be seen that Loewy used an 

infinite series solution while calculating the downwash. If the infinite number of 

revolutions changed with a finite number of revolutions, a new lift deficiency 

function will be obtained which is given in the [6] as: 

 𝐶𝑁
′ (𝑘) =

𝐻1
(2)(𝑘) + 2𝐽1(𝑘)𝑊

′
𝑁(𝑘,𝑚, ℎ̂)

𝐻1
(2)(𝑘) + 𝑖𝐻0

(2)(𝑘) + 2[𝐽1(𝑘) + 𝑖𝐽0(𝑘)]𝑊′
𝑁(𝑘,𝑚, ℎ̂)

 (5.53) 

where 𝑊𝑁 is returning finite wake effect and given as in [6]: 

 𝑊′
𝑁(𝑘,𝑚, ℎ̂) =  ∑ 𝑒−𝑛𝑘ℎ̂𝑒−𝑖2𝜋𝑚𝑛

𝑁

𝑛=1

 (5.54) 

where 𝑚 is the non-dimensional frequency ratio, ℎ̂ is the vertical distance between 

the wakes and it is given as ℎ̂ =
4𝜆

𝜎
, 𝑁 is the finite number of the wakes. It is 

observed that after 1000 wakes 𝑊′𝑁 converges. Therefore, in this work finite wake 

lift deficiency function is calculated by using 1000 wakes. The comparison 

of 𝐶𝑁
′ (𝑘) with 𝐶(𝑘) and comparison of their real and imaginary parts are given in 

Figure 5.14 and Figure 5.15 respectively. 
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Figure 5.14. Comparison of finite wake lift deficiency functions of the reference 

blade for different non-dimensional frequency ratios with Theodorsen’s lift 

deficiency function w.r.t the reduced frequency k. 
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Figure 5.15. Comparison of real and imaginary parts of finite wake lift deficiency 

functions of the reference blade for different non-dimensional frequency ratios with 

Theodorsen’s lift deficiency function w.r.t the reduced frequency 𝑘. 
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In Figure 5.14, it is observed that finite wake lift deficiency function has a similar 

characteristic as Loewy’s lift deficiency function for all 𝑚’s except 𝑚 = 0. 

Although 𝐶𝑁
′ (𝑘) for 𝑚 = 0 curve is also similar to 𝐶′(𝑘), 𝐶𝑁

′ (𝑘) approaches zero if 

𝑘 approaches to zero i.e., lim
𝑘→0

𝐶𝑁
′ (𝑘) = 1, whereas lim

𝑘→0
𝐶′(𝑘) ≅ 0.58 for the 

reference blade. Therefore, finite wake lift deficiency function gives different 

results than Loewy’s lift deficiency function for lower 𝑘 values and 𝑚 = 0. 

In Figure 5.15, different characteristic of the 𝐶𝑁
′ (𝑘) for 𝑚 = 0 could be observed in 

detail. As 𝑘 approaches to zero real part of 𝐶𝑁
′ (𝑘) approaches to 1. It is also seen 

that real and imaginary parts of 𝐶(𝑘) and 𝐶𝑁
′ (𝑘) are identical for 𝑘 > 1 which is an 

expected outcome since finite wake lift deficiency function is based on Loewy’s 

unsteady aerodynamic theory and Loewy’s lift deficiency function is identical to 

Theodorsen’s lift deficiency function for 𝑘 > 1. 

As it is done in Section 5.5, by updating the non-dimensional complex 

aerodynamic coefficients with 𝐶𝑁
′ (𝑘), the flutter determinant in Eq. (5.47) could be 

solved to find the flutter speed. By implementing finite wake lift deficiency 

function into the flutter determinant in Eq. (5.47), flutter speed is found as 463 m/s 

if airfoil section is taken from %75 radius of the blade. If the section is taken from 

%95 radius of the blade, the flutter speed is found as 474 m/s. 
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Figure 5.16. Section’s tangential velocity versus damping and modal frequency at 

%75 of the radius of the reference blade under finite wake unsteady aerodynamic 

loads with structural damping (K-Method). 
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Figure 5.17. Section’s tangential velocity versus damping and modal frequency at 

%95 of the radius of the reference blade under finite wake unsteady aerodynamic 

loads with structural damping (K-Method). 



 

 

129 

5.7 Comparison of K-Method with Finite Element Analysis 

In this section, comparisons of presented K-Method results with finite element 

analyses results are going to be discussed. To compare the results, finite element 

analyses results from Ref. [21] are going to be taken. In [21] flutter analyses are 

conducted by using MSC FlightLoads for a symmetrical Wortmann FX 76-120 

airfoil. Dimensions and structural design of the symmetrical wing for which flutter 

analysis is conducted in [21] are given in Figure 5.18 and Figure 5.19 respectively. 

 

Figure 5.18. Dimensions of the Wortmann FX 76-120 symmetrical wing. [21] 

In Figure 5.18, C and F represent clamped and free boundary conditions of the 

wing respectively. According to Figure 5.18, reference wing has 0.5 m chord and   

2 m span. Aluminum 6061-76 is chosen for the material of the reference Wortmann 

FX 76-120 wing whose Young’s Modulus is 70 GPa, Poisson’s ratio is 0.3 and 

density is 2710 kg/m3. Ribs of the wing have 1.5 mm thickness and skin thickness 

of the wing is 1 mm. 
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Figure 5.19. Structural design and finite element mesh of the reference Wortmann 

FX 76-120 symmetrical wing. [21] 

In [21], flutter speed of the Wortmann FX 76-120 wing is found as about 368 m/s 

in sea level altitude. Let us compare the finite element result with the K-Method 

discussed in Section 5.4. To be able to predict the flutter speed, non-dimensional 

parameters of the reference wing should be given firstly. Necessary non-

dimensional parameters to solve the flutter determinant in Eq. (5.47) of the 

reference Wortmann FX 76-120 wing are 𝑥𝜃 = 0.241, 𝑟𝑎
2 = 0.406, 𝜑0.75 =

0.157, 𝜑0.95 = 0.124, 𝜇𝑚 = 2.40. In [23], 𝐶𝐿𝛼 of the wing is given as 6.15; 

therefore, 𝐹𝑓 is obtained as 0.98. 
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Figure 5.20. Section’s velocity versus damping and modal frequency at %75 span 

of the reference Wortmann FX 76-120 symmetrical wing under Theodorsen’s 

unsteady aerodynamic loads with structural damping (K-Method). 



 

 

132 

 

 

Figure 5.21. Section’s velocity versus damping and modal frequency at %95 span 

of the reference Wortmann FX 76-120 symmetrical wing under Theodorsen’s 

unsteady aerodynamic loads with structural damping (K-Method). 
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According to K-Method, flutter speed of the reference Wortmann FX 76-120 wing 

is found as 358 m/s if the section is taken from %75 span of the reference wing. If 

the section is taken from %95 span, flutter speed is predicted as 321 m/s. In [21], 

flutter speed of the reference Wortmann FX 76-120 wing is found as 368 m/s by 

using MSC FlightLoads. It is observed that if the section is taken from %75 span of 

the wing, K-Method predicts the flutter speed very close to the finite element 

analysis with a deviation of %2.7; however, if the section is taken from %95 flutter 

speed prediction of K-Method deviates %12.8 from Ref. [21]. Therefore, it could 

be concluded that K-Method could be used to obtain a robust flutter speed 

prediction by taking the section from %75 span, whereas flutter speed is found 

conservatively if the section taken from %95 span.  

Another important conclusion regarding the results given in Figure 5.20 and Figure 

5.21 is that predicted flutter speed is lower if the section is taken from %95 span in 

contrast to the reference helicopter blade’s flutter predictions in which flutter speed 

is found higher if the section is taken from the %95 radius. Hence, it could be 

stated that if the flutter speed is intended to be found by implementing sectional 

analysis, usage of different sections would be wise to be on the safe side. 
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5.8 Comparison of the Predicted Flutter Speeds 

Table 5.1 Comparison of flutter speed predictions of the methods used for %75 and 

%95 radius of the blade. 

Method %75 Radius %95 Radius 

Steady Loads 459 m/s 444 m/s 

Theodorsen 481 m/s 457 m/s 

Theodorsen K-Method 481 m/s 457 m/s 

Loewy K-Method 463 m/s 474 m/s 

Finite Wake K-Method 463 m/s 474 m/s 

 

According to Table 5.1, predicted flutter speeds of the reference blade by the steady 

load assumption are the lowest ones for both sections. The main reason behind this 

fact is that in unsteady aerodynamic theories there are some terms which act as a 

damping in the Lagrangians of the typical section. However, these aerodynamic 

damping terms do not exist in the steady load. Therefore, steady loads method 

predicts the lowest flutter speed. 

Another observation from Table 5.1 is that Theodorsen’s unsteady aerodynamic 

theory predicts same flutter speed whether K-Method is implemented or not. In [10], 

an example for which Theodorsen’s unsteady aerodynamic and K-Method predicted 

same flutter speed is given as well. Therefore, it could be stated that Theodorsen’s 

unsteady aerodynamic, and K-Method predict same flutter speed by referring the 

obtained results and Ref. [10]. It is also seen that flutter speed predictions are 

identical when Loewy’s unsteady aerodynamic theory and finite wake unsteady 

aerodynamic theories are implemented. The main reason behind this situation is that 

finite wake unsteady aerodynamic theory is an unsteady aerodynamic theory based 

on Loewy’s theory such that the lift deficiency function of the finite wake unsteady 

aerodynamic theory is almost identical to Loewy’s. Therefore, they predict same 

flutter speed for the reference blade.  



 

 

135 

In Table 5.1, it is observed that flutter speed predictions of steady loads, 

Theodorsen’s unsteady aerodynamic theory and K-Method are higher if the section 

is taken from %75 radius. On the other hand, Loewy’s unsteady aerodynamic 

theory and finite wake theory predicts flutter speed higher if the section is taken 

from %95 radius of the blade. All non-dimensional parameters given in Eq. (5.19) 

are same in the structural part of the flutter determinant in Eq. (5.40) except the 

ratio of the natural frequencies 𝜑, whereas in the aerodynamic part in Eq. (5.40) is 

different for each aerodynamic theory which makes the solution of the flutter 

determinant different than each other. If the solutions of the flutter determinant are 

inspected in detail it is seen that solution of the determinant is non-linearly 

dependent on the ratio of the natural frequencies 𝜑 and aerodynamic terms. 

Therefore, changing the 𝜑 non-linearly affects the solution of the flutter 

determinant as it could be seen in Table 5.1. Hence, how changing 𝜑 and 

aerodynamic terms will affect the flutter determinant may not be predicted easily. 

Although predicted flutter speed values are well beyond the flight envelope, found 

flutter speeds are different for each aerodynamic theory. As discussed in Section 

5.5, Loewy’s unsteady aerodynamic theory is valid for only in hover and near 

hover flight conditions. Therefore, it could be concluded that for a helicopter blade, 

different theories should be used to predict the flutter speed since they are valid for 

different flight conditions and they give different results from each other. 
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CHAPTER 6  

6 DISCUSSIONS AND FUTURE WORK 

The main purposes of this work are to determine whether the divergence or flutter 

would occur in the flight envelope and to examine how valid the torsionally rigid 

blade assumption is. 

It is found that no divergence is expected since the shear center is located in front 

of the aerodynamic center. It is also found that including the effects of the torsional 

twist of the blade do not change the results considerably in a level flight compared 

to the rigid blade assumption since the distance between the aerodynamic center 

and the shear center is very low. Especially the required powers are almost 

identical. The only noticeable difference is found between the necessary collective 

inputs. It is found that required collective input for a trimmed level flight is only 

0.05 degree is higher if the blade is assumed to be elastic in the torsional direction. 

The reason behind this situation is that the shear center is forward of the 

aerodynamic center. Therefore, any aerodynamic lift causes a negative torsional 

twist of the blade which decreases effective angle of attack; as a result, an increase 

in the collective input is needed to compensate the lift loss due to the negative 

torsional twist. If the required inputs are compared with each other, it could be 

concluded that assuming the blade is torsionally rigid is a valid assumption. 

For the flutter analyses, the reference blade is found as flutter-safe in the given 

flight speed range. Although different theories are used to determine the flutter 

speed, all theories expect that the flutter speed is above 300 m/s which is much 

higher than the flight envelope. Therefore, it could be said that the reference blade 

will not experience any flutter in the current flight envelope according to the 

methodology proposed in this work. However, a more detailed three-dimensional 

or finite element analysis should be conducted to say undoubtedly that the blade 

will not experience any flutter in the given flight envelope. 
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To take this work one step further: 

• In this work, only trimmed level flight is inspected. Full flight envelope 

including all the maneuvers and load cases of the reference helicopter could 

be analyzed to examine the validity of rigid blade assumption. 

• Higher order harmonics are neglected and only the first harmonics are 

considered in this work. Including the higher harmonics and re-doing the 

analyses could be done to observe the effects of the higher harmonics. 

• For the flapping motion, out-of-plane bending of the blades is assumed to 

be constant through the blades and structural damping is ignored, and the 

flapping motion is modeled as if the system was a pure mass-spring system. 

Flapping motion could be analyzed by implementing exact out-of-plane 

bending angles and adding the structural damping to the system. 

• Inertial effects in the torsional dynamics of the blade are ignored. Analyses 

conducted in the static aeroelastic part could be expanded by adding the 

inertial effects of the torsional dynamics. 

• Root’s spring and damper systems could be implemented to see the effects 

of spring and damper. 

• Inflow field of the rotor is assumed to be uniform. Different inflow models 

especially dynamic inflow models could be implemented into the analyses 

to increase the accuracy of the work. 

• In static aeroelasticity part, loads are assumed to be steady, and any 

unsteady effects are ignored. Instead of steady aerodynamics loads, 

unsteady aerodynamics could be implemented. 

• Aerodynamic center and elastic axis are assumed to stay constant during 

hover and forward flight. Change in aerodynamic center and elastic axis 

could be considered during the analyses. 

• Flutter analyses are done w.r.t the sections taken from the reference 

blade’s %75 and %95 span. Instead of taking a section from the blade, 

whole blades equation motion and aerodynamic loads could be written to 

obtain the flutter speed. 
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• Compressibility effects are ignored while calculating the unsteady 

aerodynamic loads. Flutter analyses could be carried by including the 

compressibility effects. 

• Inflow effect is ignored in Theodorsen’s unsteady aerodynamic theory. 

• Pitching and plunging couplings coming from the rotation of the blade are 

ignored since the distance between the mass center and shear center is low. 

Flutter analyses could be re-conducted by including these couplings.  

• A more sophisticated unsteady aerodynamic theory developed for 

helicopters in forward flight could be used to determine the flutter speed for 

the main rotor blades in forward flight. 
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APPENDICES 

A. Natural Frequencies of the Sections 

In Ch. 5, sectional properties are used to predict the flutter speed of the reference 

blade. These sectional properties are non-dimensional radius of gyration 𝑟𝑎
2, mass 

ratio parameter 𝜇𝑚, non-dimensional distance between elastic axis and shear center 

𝑥𝜃 and the ratio of the uncoupled plunging natural frequency to the pitching natural 

frequency of the airfoil 𝜑. Since the reference blade is uniform and it is assumed 

that shear center and center of gravity of the blade do not change with the rotation 

of the blade, non-dimensional parameters 𝑟𝑎
2, 𝜇𝑚 and 𝑥𝜃 are same for both sections 

taken from %75 and %95 radius of the blade. However, out-of-plane bending 

(plunging) and torsional (pitching) stiffnesses of the sections change with location 

which makes the ratios of the plunging and pitching natural frequencies different 

than each other although mass and inertia parameters of the sections are same. 

 

𝜔ℎ0.75 =
√
𝑘ℎ0.75
𝑚

𝜔𝜃0.75 = √
𝑘𝜃0.75
𝐼𝑝

𝜔ℎ0.95 =
√
𝑘ℎ0.95
𝑚

𝜔𝜃0.95 = √
𝑘𝜃0.95
𝐼𝑝

 (A.1) 

where 𝑚 is the blade mass per unit length, 𝐼𝑝 is the blade mass moment inertia per 

unit length in pitching direction (along the blade span), 𝑘ℎ and 𝑘𝜃 are the plunging 

and pitching stiffnesses of the sections respectively. Spring stiffnesses of the 

reference blade are defined from the relations: 

 𝑘ℎ =
𝐹

𝛿ℎ
𝑘𝜃 =

𝑀

𝛿𝜃
 (A.2) 

where 𝛿ℎ and 𝛿𝜃 are the plunging and pitching deflections of corresponding 

sections of the reference blade under a load which is applied at the section’s 

locations respectively.  
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To illustrate how spring stiffnesses and natural frequencies of the sections are 

obtained, let us consider a clamped-free, flat and uniform plate whose dimensions 

are 2 m in length, 20 cm in width, 1 mm in thickness.  

 

a) Top view    b)    Front view  

Figure A.1. Flat plate dimensions. 

Young’s Modulus of the plate is given as 70 GPa, Poisson’s ratio is 0.3, density of 

the plate is 2700 kg/m3. For given dimensions and density, mass properties of the 

flat plate are found as 𝑚 = 0.54 𝑘𝑔/𝑚 and 𝐼𝑝 = 1.8𝑥10−3 𝑘𝑔𝑚. 

 

Figure A.2. Finite element mesh of the flat plate. 

First out-of-plane bending and torsional natural frequencies of the plates are 

obtained as 𝜔ℎ = 0.21 𝐻𝑧 and 𝜔𝜃 = 4.00 𝐻𝑧 by using MSC Nastran. 
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a) 1st out-of-plane bending mode  b)    1st torsional mode 

Figure A.3. First out-of-plane bending and torsional mode shapes. 

If a 10−3 𝑁 force and 10−3 𝑁𝑚 moment are applied separately to the nodes where 

they are located %75 and %95 span of the flat plate in spanwise direction and 

center of gravity, displacements are obtained as 𝛿ℎ0.75 = 0.952 𝑚𝑚, 𝛿𝜃0.75 =

8.43𝑥10−4 𝑟𝑎𝑑, 𝛿ℎ0.95 = 1.94 𝑚𝑚 and 𝛿𝜃0.95 = 1.07𝑥10−3 𝑟𝑎𝑑. 

By using the displacements, spring stiffnesses are found as: 

 

𝑘ℎ0.75 = 1.05𝑁 𝑚⁄ 𝑘𝜃0.75 = 1.19 𝑁𝑚/𝑟𝑎𝑑

𝑘ℎ0.95 = 0.52 𝑁/𝑚 𝑘𝜃0.95 = 0.93 𝑁𝑚/𝑟𝑎𝑑

 (A.3) 

from which natural frequencies of the sections are obtained as: 

 

𝜔ℎ0.75 = 0.22 𝐻𝑧 𝜔𝜃0.75 = 4.09 𝐻𝑧

𝜔ℎ0.95 = 0.16 𝐻𝑧 𝜔𝜃0.95 = 3.63 𝐻𝑧

 (A.4) 

If the natural frequencies of the sections are compared with the natural frequencies 

of the plate, it is found that natural frequencies of the section taken from %75 span 

of the plate deviates about %5 and %2 from first out-of-plane bending and torsional 

natural frequencies of the plate. On the other hand, natural frequencies of the 

section from %95 span of the plate deviate about %26 for first out-of-plane 

bending and %10 for first torsional natural frequency of the plate. Therefore, the 

plate could be approximated by using its %75 span section. 
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In Section 5.7, a Wortmann FX 76-120 symmetrical wing whose dimensions and 

structural details are given from Ref. [21]. First out-of-plane bending and torsional 

natural frequencies of the Wortmann FX 76-120 wing are given as 𝜔ℎ = 14.7 𝐻𝑧 

and 𝜔𝜃 = 98.7 𝐻𝑧 respectively and methodology described here is applied to the 

wing to find flutter speed. Natural frequencies of the %75 and %95 sections are: 

 

𝜔ℎ0.75 = 15.6 𝐻𝑧 𝜔𝜃0.75 = 100.2 𝐻𝑧

𝜔ℎ0.95 = 11.0 𝐻𝑧 𝜔𝜃0.95 = 89.0 𝐻𝑧

 (A.5) 

When the natural frequencies are compared with the reference, the deviations of the 

out-of-plane bending natural frequencies of the sections are about %6 and %25 for 

%75 and %95 sections respectively. Whereas the deviations for the torsional 

natural frequencies are about %1.5 for %75 section and %9 for %95 section. 

Flutter speed of the wing is found as 368 m/s in Ref. [21] by using MSC 

FlightLoads, whereas by using offered K-Method flutter speed is found as 358 m/s 

if the %75 section is used. If the section is taken from %95 flutter speed is 

predicted as 321 m/s for the Wortmann FX 76 120 wing. The difference is about 

%2.7 and %13 respectively. When the flutter speeds predicted by K-Method are 

compared with the finite element analysis, it is seen that there is a correlation 

between the flutter speed predictions and how good approximated natural 

frequencies of the wings by the sections. Hence it could be concluded that if the 

natural frequencies of the sections are close to the natural frequencies of the 

system, flutter speed predictions are also close to the three-dimensional flutter 

predictions. 
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